K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2016

Cho mk hỏi câu a, chỗ trừ 3x2 y có y ko vậy

27 tháng 8 2016

Giải giúp mình nhé.

13 tháng 10 2018

\(3x^4-5x^3-18x^2-3x+5\)

\(=\left(3x^4-6x^3-15x^2\right)+\left(x^3-2x^2-5x\right)-\left(x^2-2x-5\right)\)

\(=3x^2\left(x^2-2x-5\right)+x\left(x^2-2x-5\right)-\left(x^2-2x-5\right)\)

\(=\left(x^2-2x-5\right)\left(3x^2+x-1\right)\)

3 tháng 9 2018

pạn ơi pạn đã lm đk chưa? nếu lm đk oy cho mk xem cách lm bài 2 nhé. cảm ơn pạn nhìu lắm

18 tháng 7 2017

a) \(\left(4x-1\right)^2-\left(3x+2\right)\left(3x-2\right)=\left(7x-1\right)\left(x+2\right)+\left(2x+1\right)^2-\left(4x^2+7\right)\)(1)

\(\Leftrightarrow\left(16x^2-8x+1\right)-\left(9x^2-4\right)=\left(7x^2+14x-x-2\right)+\left(4x^2+4x+1\right)-\left(4x^2+7\right)\)

\(\Leftrightarrow16x^2-8x+1-9x^2+4=7x^2+13x-2+4x^2+4x+1-4x^2-7\)

\(\Leftrightarrow7x^2-8x+5=7x^2+17x-8\)

\(\Leftrightarrow7x^2-8x-7x^2-17x=-8-5\)

\(\Leftrightarrow-25x=-13\)

\(\Leftrightarrow x=\dfrac{13}{25}\)

Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{13}{25}\right\}\)

18 tháng 7 2017

gắp cái gì

3 tháng 5 2020
https://i.imgur.com/88Zm20M.jpg
3 tháng 5 2020
https://i.imgur.com/zsGzAKT.jpg
10 tháng 10 2018

de bai dau ha ban

10 tháng 10 2018

Đề bài là gì

8 tháng 1 2018

Bài 2: a) \(3x^3-3x=0\Leftrightarrow3x\left(x^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)

b) \(x^2-x+\frac{1}{4}=0\Leftrightarrow x^2-2.\frac{1}{2}+\left(\frac{1}{2}\right)^2=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

15 tháng 12 2016

giúp mk vskhocroi

20 tháng 12 2016

bài 1: ... phá hết ra

bài 2

câu a, tách -2x^2 thành -x^2-x^2 rồi tự giải quyết

câu b, thêm bớt 1 để tạo hằng đẳng thức

câu c, đổi z-x thành -x-z

câu d là hằng đẳng thức đó má nội

mình rất muốn làm hết nhưng cái tật lười nó ko cho mình làm, mong bạn thông cảm

22 tháng 4 2020

d, (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0

Đặt x2 + 4x + 8 = t ta được:

t2 + 3xt + 2x2 = 0

\(\Leftrightarrow\) t2 + xt + 2xt + 2x2 = 0

\(\Leftrightarrow\) t(t + x) + 2x(t + x) = 0

\(\Leftrightarrow\) (t + x)(t + 2x) = 0

Thay t = x2 + 4x + 8 ta được:

(x2 + 4x + 8 + x)(x2 + 4x + 8 + 2x) = 0

\(\Leftrightarrow\) (x2 + 5x + 8)[x(x + 4) + 2(x + 4)] = 0

\(\Leftrightarrow\) (x2 + 5x + \(\frac{25}{4}\) + \(\frac{7}{4}\))(x + 4)(x + 2) = 0

\(\Leftrightarrow\) [(x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\)](x + 4)(x + 2) = 0

Vì (x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\) > 0 với mọi x

\(\Rightarrow\left[{}\begin{matrix}x+4=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-2\end{matrix}\right.\)

Vậy S = {-4; -2}

Mình giúp bn phần khó thôi!

Chúc bn học tốt!!

22 tháng 4 2020

c) \(\frac{1}{x-1}\)+\(\frac{2x^2-5}{x^3-1}\)=\(\frac{4}{x^2+x+1}\) (ĐKXĐ:x≠1)

\(\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)+\(\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}\)=\(\frac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

⇒x2+x+1+2x2-5=4x-4

⇔3x2-3x=0

⇔3x(x-1)=0

⇔x=0 (TMĐK) hoặc x=1 (loại)

Vậy tập nghiệm của phương trình đã cho là:S={0}