Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lần sau đăng ít một thôi toàn bài dài :v, ko phải ko làm mà là ngại làm
a)Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{a}{2a+b+c}=\frac{a}{\left(a+b\right)+\left(a+c\right)}\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{b}{a+2b+c}\le\frac{1}{4}\left(\frac{b}{a+b}+\frac{b}{b+c}\right);\frac{c}{a+b+2c}\le\frac{1}{4}\left(\frac{c}{a+c}+\frac{c}{b+c}\right)\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\le\frac{1}{4}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{4}\)
Xảy ra khi \(a=b=c\)
b)Đặt \(THANG=abc\left(a^2+bc\right)\left(b^2+ac\right)\left(c^2+ab\right)>0\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{b+c}{a^2+bc}-\frac{c+a}{b^2+ac}-\frac{a+b}{a^2+ab}\)
\(=\frac{a^4b^4+b^4c^4+c^4a^4-a^4b^2c^2-b^4c^2a^2-c^4a^2b^2}{THANG}\)
\(=\frac{\left(a^2b^2-b^2c^2\right)^2+\left(b^2c^2-c^2a^2\right)+\left(c^2a^2-a^2b^2\right)^2}{2THANG}\ge0\) (Đúng)
Xảy ra khi \(a=b=c\)
c)Ta có:\(\frac{a^2}{b^2+c^2}-\frac{a}{b+c}=\frac{ab\left(a-b\right)+ac\left(a-c\right)}{\left(b+c\right)\left(b^2+c^2\right)}\)
Và \(\frac{b^2}{c^2+a^2}-\frac{b}{c+a}=\frac{bc\left(b-c\right)+ab\left(b-a\right)}{\left(c+a\right)\left(c^2+a^2\right)}\)
\(\frac{c^2}{a^2+b^2}-\frac{c}{a+b}=\frac{ac\left(c-a\right)+bc\left(c-b\right)}{\left(b+a\right)\left(b^2+a^2\right)}\)
Cộng theo vế 3 đăng thức trên ta có:
\(VT-VP=Σ\left[\frac{ab\left(a-b\right)}{\left(b+c\right)\left(b^2+c^2\right)}-\frac{ab\left(a-b\right)}{\left(a+c\right)\left(a^2+c^2\right)}\right]\)
\(=\left(a^2+b^2+c^2+ab+bc+ca\right)\cdotΣ\frac{ab\left(a-b\right)^2}{\left(b+c\right)\left(c+a\right)\left(b^2+c^2\right)\left(c^2+a^2\right)}\ge0\)
2 bài cuối full quy đồng mệt thật :v
\(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\) (Cô si ngược + Rút gọn)
Tương tự \(\frac{b}{1+c^2}\ge b-\frac{bc}{2};\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)
Cộng theo vế 3 BĐT,ta được: \(VT\ge\left(a+b+c\right)-\left(\frac{ab+bc+ca}{2}\right)=3-\frac{ab+bc+ca}{2}\)
Mặt khác,ta có BĐT \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\) (bạn tự c/m,không làm được ib)
Thay x = a; y = b ; z = c,ta có: \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{9}{3}=3\)
Suy ra\(VT\ge3-\frac{ab+bc+ca}{2}\ge3-\frac{3}{2}=\frac{3}{2}^{\left(đpcm\right)}\)
Dấu "=" xảy ra khi a = b = c = 1
Bài 1:
a)Từ \(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Rightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Rightarrow\left[\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{matrix}\right.\) (Điều phải chứng minh)
b)Ngược lại ta cũng có : nếu \(a+b+c=0\) thì \(a^3+b^3+c^3=3abc\)
Bài 2:
a)\(\frac{3m^2+7m+1}{m-3}=\frac{3m\left(m-3\right)+16m+1}{m-3}=\frac{3m\left(m-3\right)}{m-3}+\frac{16m+1}{m-3}=3m+\frac{16m+1}{m-3}\in Z\)
Suy ra \(16m+1⋮m-3\)
\(\frac{16m+1}{m-3}=\frac{16\left(m-3\right)+49}{m-3}=\frac{16\left(m-3\right)}{m-3}+\frac{49}{m-3}=16+\frac{49}{m-3}\in Z\)
Suy ra 49 chia hết m-3....
b)tương tự
a/ \(\frac{b}{b}.\sqrt{\frac{a^2+b^2}{2}}+\frac{c}{c}.\sqrt{\frac{b^2+c^2}{2}}+\frac{a}{a}.\sqrt{\frac{c^2+a^2}{2}}\)
\(\le\frac{1}{b}.\left(\frac{3b^2+a^2}{4}\right)+\frac{1}{c}.\left(\frac{3c^2+b^2}{4}\right)+\frac{1}{a}.\left(\frac{3a^2+c^2}{4}\right)\)
\(=\frac{1}{4}.\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{3}{4}.\left(a+b+c\right)\)
Ta cần chứng minh
\(\frac{1}{4}.\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{3}{4}.\left(a+b+c\right)\le\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)
\(\Leftrightarrow\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\ge\left(a+b+c\right)\)
Mà: \(\Leftrightarrow\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\ge\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)
Vậy có ĐPCM.
Câu b làm y chang.
a(a2 - bc) + b(b2 - ca) + c(c2 - ab) = 0
a3 - abc + b3 - abc + c3 - abc = 0
a3 + b3 + c3 - 3abc = 0
(a + b + c)(a2 + b2 + c2 - ab - ac - bc) = 0
a2 + b2 + c2 - ab - ac - bc = 0 (a + b + c \(\ne\) 0)
2 . (a2 + b2 + c2 - ab - bc - ac) = 2 . 0
2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0
a2 - 2ab + b2 + a2 - 2ac + c2 + b2 - 2bc + c2 = 0
(a - b)2 + (a - c)2 + (b - c)2 = 0
\(\left[\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\)
\(\left[\begin{matrix}a=b\\a=c\\b=c\end{matrix}\right.\)
a = b = c
Thay b = a và c = a vào P, ta có:
\(P=\frac{a^2}{a^2}+\frac{a^2}{a^2}+\frac{a^2}{a^2}\)
\(=1+1+1\)
\(=3\)
ĐS: 3
#Phương An cho mk hỏi ngu tí: sao bạn làm ra được bước thứ 3 vậy. Đây là HĐT số 6 chứ có phải số 4 đâu