Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(c^2=\left(a^x.b^y\right)^2=a^{2x}.b^{2y};\)có 21 ước \(\Rightarrow\left(2x+1\right)\left(2y+1\right)=21=3.7=1.21\Rightarrow\orbr{\begin{cases}x=\left\{1,3\right\}\\y=\left\{3,1\right\}\end{cases}}\)
\(c^3=a^{3x}.b^{3y}\Rightarrow\left(3x+1\right)\left(3y+1\right)=4.10=40\)
Làm được rồi nè:
Dạng phân tích ra thừa số nguyên tố của n là n = ax.by ( x, y \(\ne\) 0).
Ta có n2 = a2x.b2y có (2x + 1).(2y + 1) ước số nên (2x + 1).(2y + 1) = 21.
Giả sử x \(\le\) y, ta được x = 1 và y = 3
n3 = a3x.b3y có (3x + 1).(3y + 1) ước số, tức là có 4.10 = 40 (ước)
Vậy n3 có 40 ước số.
Theo bài ra, ta có:
B = ax.by
=> B2 = (ax.by)2 = a2x.b2y
Vì B2 có 15 ước nên ta có:
(2x + 1)(2y + 1) = 15
=> (2x + 1)\(\in\)Ư(15)
=> (2x + 1)\(\in\){1; 3; 5; 15}
Vì x khác 0 nên 2x > hoặc = 2 => 2x + 1 > hoặc = 3.
=> (2x + 1)\(\in\){3; 5; 15}
Ta có bảng:
2x + 1 3 5 15
2x 2 4 14
x 1 2 7
2y + 1 5 3 1
2y 4 2 0
y 2 1 0(loại)
Vì x và y có vai trò như nhau nên giả sử x = 1; y = 2 thì ta có:
B3 = a3.1.b3.2 = a3.b9
B3 có số ược là:
(3 + 1)(9 + 1) = 40 (ước)
ko phải 40 ước đâu bn mik chắc 1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000% lun đó
B=ax.by⇒B2=a2x.b2yB=ax.by⇒B2=a2x.b2y ; B3=a3x.a3yB3=a3x.a3y
⇒⇒ số ước số tự nhiên của B2B2 là (2x+1)(2y+1)(2x+1)(2y+1)
⇒(2x+1)(2y+1)=15⇒(2x+1)(2y+1)=15
⇒⇒{2x+1=32y+1=5{2x+1=32y+1=5 ⇒{x=1y=2⇒{x=1y=2 hoặc {2x+1=52y+1=3{2x+1=52y+1=3 ⇒{x=2y=1⇒{x=2y=1
⇒⇒ số ước của B3B3 là (3x+1)(3y+1)=4.7=28
Ta có:
3n.152 = 3n.32.52 = 3n+2.52
=> số ước của 3n.152 là: (n + 2 + 1).(2 + 1) = 15
=> (n + 3).3 = 15
=> n + 3 = 15 : 3
=> n + 3 = 5
=> n = 5 - 3 = 2
Vậy n = 2 thỏa mãn đề bài
Sao chả ai trả lời câu hỏi này hít dọ huhu. Mk cũng đag cần gấp lắm...huwaaaaaaaaaaaa
1/Tìm số tự nhiên a biết a+1 là ước của 30.
2/ Có bao nhiêu số tự nhiên có 6 chữ số abcdeg mà abc<deg
Phân tích n thành thừa số nguyên tố: n = p(1)n(1).p(2)n(2).p(3)n(3)
Do đó n3 = p(1)3n(1).p(2)3n(2).p(3)3n(3)
Số ước tự nhiên của n3 là [3n(1) + 1][3n(2) + 1][3n(3) + 1] = 1729.
Phân tích 1729 thành thừa số nguyên tố: 1729 = 7.13.19
Không mất tính tổng quát, ta coi vai trò của n(1); n(2) và n(3) là như nhau. Khi đó
3n(1) = 7 - 1 = 6, suy ra n(1) = 6 : 3 = 2
3n(2) = 13 - 1 = 12, suy ra n(2) = 12 : 3 = 4
3n(3) = 19 - 1 = 18, suy ra n(3) = 18 : 3 = 6
Do đó n = p(1)2.p(2)4.p(3)6, suy ra n2 = p(1)4.p(2)8.p(3)12
Vậy số ước tự nhiên của n2 là: (4 + 1)(8 + 1)(12 + 1) = 585 (ước tự nhiên)