Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,n^3+6n^2+8n\)
\(=n\left(n^2+6n+8\right)\)
\(=n\left(n^2+4n+2n+8\right)\)
\(=n\left[\left(n^2+4n\right)+\left(2n+8\right)\right]\)
\(=n\left[n\left(n+4\right)+2\left(n+4\right)\right]\)
\(=n\left(n+2\right)\left(n+4\right)\)
Vì n chẵn ,đây là tích của ba số chẵn liên tiếp => chia hết cho 48
b, tương tự a
a) Ta có: (n2 + n - 1)2 - 1
= ( n2 + n - 1 + 1)(n2 + n - 1 - 1)
= (n2 + n)(n2 + n - 2)
= n(n + 1)(n2 + 2n - n - 2)
= n(n+ 1)[n(n + 2) - (n + 2)]
= n(n + 1)(n - 1)(n + 2)
Do n(n + 1)(n - 1)(n + 2) là tích của 4 số nguyên liên tiếp
nên 1 thừa số chia hết cho 2
1 thừa số chia hết cho 3
1 thừa số chia hết cho 4
mà (2, 3, 4) = 1
=> n(n + 1)(n - 1)(n + 2) \(⋮\)2.3.4 = 24
=> (n2 + n - 1)2 - 1 \(⋮\)24 \(\forall\)n \(\in\)Z
b) Do n chẵn => n có dạng 2k (k \(\in\)Z)
Khi đó, ta có: n3 + 6n2 + 8n
= (2k)3 + 6.(2k)2 + 8.2k
= 8k3 + 24k2 + 16k
= 8k(k2 + 3k + 2)
= 8k(k2 + 2k + k + 2)
= 8k[k(k + 2) + (k + 2)]
= 8k(k + 1)(k + 2)
Do k(k + 1)(k + 2) là tích của 3 số nguyên liên tiếp
nên 1 thừa số chia hết cho 2
1 thừa số chia hết cho 3
=> k(k + 1)(k + 2) \(⋮\)2.3 = 6
=> 8k(k + 1)(k + 2) \(⋮\)8.6 = 48
Vậy n3 + 6n2 + 8n \(⋮\)48 \(\forall\)n là số chẵn
1/ \(A=n^4-1=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
Vì \(\left(n,3\right)=1\) nên \(n⋮̸3\) nên n chia 3 dư 1 hoặc dư 2
- Nếu n chia 3 dư 1 thì \(\left(n-1\right)⋮3\Rightarrow A⋮3\)
- Nếu n chia 3 dư 2 thì \(\left(n+1\right)⋮3\Rightarrow A⋮3\)
Như vậy \(A⋮3\)
Lại có n lẻ nên n-1 và n+1 là 2 số chẵn liên tiếp \(\Rightarrow\left[\left(n-1\right)\left(n+1\right)\right]⋮8\) (1)
Mặt khác n lẻ \(\Rightarrow\left(n^2+1\right)⋮2\) (2)
Từ (1) và (2) suy ra \(\Rightarrow\left[\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\right]⋮16\)
Hay \(A⋮16\)
Ta có \(A⋮3;A⋮16\), mà (3;16) = 1 nên \(A⋮48\)
2/ \(B=n^4-1=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
- Chứng minh \(B⋮16\) tương tự như ở câu 1
- Ta sẽ đi chứng minh \(B⋮5\)
+ Nếu n chia 5 dư 1 thì \(\left(n-1\right)⋮5\Rightarrow B⋮5\)
+ Nếu n chia 5 dư 4 thì \(\left(n+1\right)⋮5\Rightarrow B⋮5\)
+ Nếu n chia 5 dư 2 hoặc dư 3 thì \(\left(n^2+1\right)⋮5\Rightarrow B⋮5\)
Do đó \(B⋮5\)
Kết hợp với \(B⋮16\) ở trên suy ra \(B⋮80\)
4. \(D=n^8-n^4=n^4\left(n^4-1\right)=n^3\left(n-1\right).n.\left(n+1\right)\left(n^2+1\right)\)
- Dễ thấy n-1, n, n+1 là 3 số nguyên liên tiếp nên \(D⋮3\)
- Chứng minh \(D⋮5\)
+ Nếu \(n⋮5\) thì \(D⋮5\)
+ Nếu n chia 5 dư 1;2;3;4 thì ... (tương tự câu 2)
- Chứng minh \(D⋮16\)
+ Nếu n chẵn thì \(n^4⋮16\Rightarrow D⋮16\)
+ Nếu n lẻ, cmtt câu 1
Ta có (16;3;5) = 1 nên \(D⋮\left(16.3.5\right)=240\)
3. \(C=n^6+n^4-2n^2=n^2\left(n^4+n^2-2\right)\)
\(=n^2\left(n^2-1\right)\left(n^2+2\right)=n^2\left(n-1\right)\left(n+1\right)\left(n^2+2\right)\)
- Chứng minh \(C⋮8\)
+ Nếu n chẵn thì \(n^2⋮4\) và \(\left(n^2+2\right)⋮2\) \(\Rightarrow\left[n^2\left(n+2\right)\right]⋮8\) nên \(C⋮8\)
+ Nếu n lẻ thì n-1 và n+1 là 2 số chẵn liên tiếp \(\Rightarrow\left[\left(n-1\right)\left(n+1\right)\right]⋮8\Rightarrow C⋮8\)
- Chứng minh \(C⋮9\)
+ Dễ thấy \(\left[n\left(n-1\right)\left(n+1\right)\right]⋮3\) (1)
+ Ta sẽ chứng minh \(\left[n\left(n^2+2\right)\right]⋮3\)
Nếu \(n⋮3\) thì \(\left[n\left(n^2+2\right)\right]⋮3\)
Nếu n chia 3 dư 1 hoặc 2 thì \(\left[n\left(n^2+2\right)\right]⋮3\)
Vậy \(\left[n\left(n^2+2\right)\right]⋮3,\forall n\in Z\) (2)
Từ (1) và (2) suy ra \(\left[n\left(n-1\right)\left(n+1\right)\right].\left[n\left(n^2+2\right)\right]⋮\left(3.3\right)=9\)
Hay \(C⋮9\)
Ta có \(C⋮8\) và \(C⋮9\), mà (8;9) = 1 nên \(C⋮72\)
a) (n + 2)2 - (n - 2)2
= (n + 2 - n + 2)(n + 2 + n - 2)
\(=8n⋮8(\forall n\in Z)\)
b) (n + 7)2 - (n - 5)2
= (n + 7 - n + 5)(n + 7 + n - 5)
= 12.(2n + 2)
= \(24\left(n+1\right)⋮24\left(\forall n\in Z\right)\)
Ta có : \(\left(5n+2\right)^2-4\)
\(=\left(5n+2-2\right).\left(5n+2+2\right)\)
\(=5n\left(5n+4\right)\)
Vì \(5⋮5\) nên \(\left(5n+2\right)^2-4⋮5\forall n\in Z\)
chỉ cho bạn mẹo nhỏ là đăng từng câu một thôi, thế sẽ không khiến người giải cảm thấy chán
2005+20052+20053+...+200510
=2005.(1+2005)+20053.(1+2005)+...+20059.(1+2005)
=2005.2006+20053.2006+...+20059.2006
=2006.(2005+20053+...+20059)
=>2005+20052+20053+...+200510 chia hết cho 2006