Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho 2 đa thức: f(x)= 9 - x5 + 4x - 2x3 + x2 - 7x4
g(x)= x5 - 9 + 2x2 + 7x4 + 2x3 - 3x
a) Sắp sếp các đa thức trên theo luỹ thừa giảm dần của biến
f(x)= 9 - x5 + 4x - 2x3 + x2 - 7x4
f(x) = -x5 - 7x4 - 2x3 + x2 + 4x + 9
g(x)= x5 - 9 + 2x2 + 7x4 + 2x3 - 3x
g(x) = x5 + 7x4 + 2x3 + 2x2 - 3x - 9
b) Tìm bậc, hệ số cao nhất, hệ số tự do của đa thức f(x); g(x)
f(x) = -x5 - 7x4 - 2x3 + x2 + 4x + 9
+ Bậc : 5 _ hệ số cao nhất : -1 _ hệ số tự do : 9
g(x) = x5 + 7x4 + 2x3 + 2x2 - 3x - 9
+ Bậc : 5_ hệ số cao nhất : 1 _ hệ số tự do : -9
c) Tính f(x) + g(x); f(x) - g(x)
f( x) + g(x) = ( -x5 - 7x4 - 2x3 + x2 + 4x + 9 ) +( x5 + 7x4 + 2x3 + 2x2 - 3x - 9 )
= -x5 - 7x4 - 2x3 + x2 + 4x + 9 + x5 + 7x4 + 2x3 + 2x2 - 3x - 9
= ( -x5 + x5 ) + ( -7x4 + 7x4 ) + ( -2x3 + 2x3 ) + ( x2 + 2x2 ) + ( 4x -3x ) + ( 9 - 9 )
= 3x2 + x
f( x) - g(x) = ( -x5 - 7x4 - 2x3 + x2 + 4x + 9 ) - ( x5 + 7x4 + 2x3 + 2x2 - 3x - 9 )
= -x5 - 7x4 - 2x3 + x2 + 4x + 9 - x5 - 7x4 - 2x3 - 2x2 + 3x + 9
= ( -x5 - x5 ) + ( -7x4 - 7x4 ) + ( -2x3 - 2x3 ) + ( x2 - 2x2 ) + ( 4x + 3x ) + ( 9 + 9 )
= -2x5 - 14x4 - 2x3 -x2 + 7x + 18
a, 2n-3 chia hết cho n+1
=>2(n+1) - 5 chia hết cho n+1
=>5 chia hết cho n+1. Từ đó tìm dc n
b, <=> 5(x+y)=xy
<=>(x-5)(y-5)=25. Đây là pt tích từ đó tìm đc x,y
c, Từ gt =>5^b chia hết cho 5^c
=>a^3+3a^2+5 chia hết cho a+3
=>5 chia hết cho a+3 =>a=2=>c=1=>b=2
tìm m để pt sau có 4 nghiệm phân biệt
(x-2)(x-3)(x+4)(x-5)=m
1. 0 giá trị ... Vì giá trị tuyệt đối luôn luôn lớn hơn hoặc bằng không tuy nhiên giá trị cho trước lại không giống nhau nên sẽ không có số nào thỏa mãn .
2. Mình không chắc lắm nhưng mình nghĩ x=0.
3. => 3x2-51=-24 => x2= ( -24+51 ) :3 =9 => x= +3 và -3
hoặc 3x2-51=24 => x2= ( 24+51 ) :3 =25 => x=+5 hoặc -5
Vậy có 4 giá trị thỏa mãn.
4. (1/-2)^40=(1/2)^40=[(1/2)^10]^4=(1/1024)^4
(1/-10)^12=(1/10)^12=[(1/10)^3]^4=(1/1000)^4
=> B <A
5. 41007.52014= (22)1007.52014 ==22.1007.52014=22004.52014=102004
=> có 2015 chữ số
Số tự nhiên n thỏa mãn:22.32n.\(\left(\frac{2}{3}\right)^n\).2n=82944 là..............(kết quả thôi)
a) \(\left(\frac{1}{3}\right)^n=\frac{1}{27}\)
\(\left(\frac{1}{3}\right)^n=\left(\frac{1}{3}\right)^3\)
\(\Rightarrow n=3\)
b) \(\left(\frac{3}{5}\right)^n=\frac{81}{625}\)
\(\left(\frac{3}{5}\right)^n=\left(\frac{3}{5}\right)^4\)
\(\Rightarrow n=4\)
c) \(3^n\cdot2^n=36\)
\(\left(3\cdot2\right)^n=36\)
\(6^n=6^2\)
\(\Rightarrow n=2\)
d) \(\frac{2^n}{3^n}=\frac{8}{27}\)
\(\left(\frac{2}{3}\right)^n=\left(\frac{2}{3}\right)^3\)
\(\Rightarrow n=3\)
\(\frac{1}{2}\cdot2^n+4.2^n=9.2^5\)
\(2^n\left(\frac{1}{2}+4\right)=9.32\)
\(2^n\left(\frac{1}{2}+\frac{8}{2}\right)=288\)
\(2^n\cdot\frac{9}{2}=288\)
\(2^n=288:\frac{9}{2}\)
\(2^n=288\cdot\frac{2}{9}\)
\(2^n=64\)
\(2^n=2^6\)
=> n = 6
vậy n = 6
câu hỏi này bỏ nhá mình quên ghi sau từ biết rồi
đừng để ý đến trả lòi cứ giải bài này đi