Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
1: =>5x+1=6/7 hoặc 5x+1=-6/7
=>5x=-1/7 hoặc 5x=-13/7
=>x=-1/35 hoặc x=-13/35
2: =>x-1=4
=>x=5
3: =>3x-1=3
=>3x=4
=>x=4/3
4: \(\Leftrightarrow\dfrac{5}{x+3}=\dfrac{-5}{6}+\dfrac{1}{2}=\dfrac{-5+3}{6}=\dfrac{-2}{6}=\dfrac{-1}{3}\)
=>x+3=-15
=>x=-18
7: \(\Leftrightarrow2^{2x+1}+2^{2x+6}=264\)
=>2^2x+1*(1+2^5)=264
=>2^2x+1=8
=>2x+1=3
=>x=1
9: =>x^4=8x
=>x^4-8x=0
=>x=2
\(\frac{4^{20}(2^{20}+1)}{4^{15}(4^{10}+1)}=4^5=1024 \)
Bài 2
Ta có; \((x-2)^{2012}\ge0\)
\(|y^2-9|^{2014}\ge0\)
=>\((x-2)^{2012}+|y^2+9|^{2014}\ge0\)
Mà \((x-2)^{2012}+|y^2+9|^{2014}=0\)
=>x-2=0=>x=2
y^2-9=0=>y=+-3
Bài 2:
\(A=\frac{8^5(-5)^8+(-2)^5.10^9}{2^{16}.5^7+20^8}\) \(=\frac{(2^3)^5(-5)^8+(-2)^5.2^9.5^9}{2^{16}.5^7+(2^2.5)^8}\)
\(=\frac{2^{15}.5^8-2^5.2^9.5^9}{2^{16}.5^7+2^{16}.5^8}\)
\(=\frac{2^{14}.5^8(2-5)}{2^{16}.5^7(1+5)}\)
\(=\frac{5(-3)}{2^2.6}=\frac{-5}{8}\)
Bài 3:
Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt\)
Thay vào:
\(\frac{5a+3b}{5a-3b}=\frac{5bt+3b}{5bt-3b}=\frac{b(5t+3)}{b(5t-3)}=\frac{5t+3}{5t-3}\)
\(\frac{5c+3d}{5c-3d}=\frac{5dt+3d}{5dt-3d}=\frac{d(5t+3)}{d(5t-3)}=\frac{5t+3}{5t-3}\)
Do đó: \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\) (đpcm)
Bài 4:
Ta có:
\(A=3+3^2+3^3+3^4+...+3^{100}\)
\(=(3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+....+(3^{97}+3^{98}+3^{99}+3^{100})\)
\(=3(1+3+3^2+3^3)+3^5(1+3+3^2+3^3)+...+3^{97}(1+3+3^2+3^3)\)
\(=3.40+3^5.40+....+3^{97}.40\)
\(=120(1+3^4+....+3^{96})\vdots 120\)
Ta có đpcm.
\(\text{Câu 1 :}\)
\(A=\dfrac{5}{17}+\dfrac{-4}{9}-\dfrac{20}{31}+\dfrac{12}{17}-\dfrac{11}{31}\\ A=\left(\dfrac{5}{17}+\dfrac{12}{17}\right)-\left(\dfrac{20}{31}+\dfrac{11}{31}\right)+\dfrac{-4}{9}\\ A=1-1+-\dfrac{4}{9}\\ A=-\dfrac{4}{9}\)
\(B=\dfrac{-3}{7}+\dfrac{7}{15}+\dfrac{-4}{7}+\dfrac{8}{15}-\dfrac{-2}{3}\\ B=\left(\dfrac{-3}{7}+\dfrac{-4}{7}\right)+\left(\dfrac{7}{15}+\dfrac{8}{18}\right)-\dfrac{-2}{3}\\ B=\left(-1\right)+1+\dfrac{2}{3}\\ B=\dfrac{2}{3}\)
\(\text{Câu 2 : }\)
\(A< \dfrac{x}{9}\le B\\ \Rightarrow\dfrac{-4}{9}< \dfrac{x}{9}\le\dfrac{2}{3}\\ \Rightarrow\dfrac{-4}{9}< \dfrac{x}{9}\le\dfrac{6}{9}\\ \Rightarrow-4< x\le6\\ \Rightarrow x\in\left\{\pm4;\pm3;\pm2;\pm1;0;5;6\right\}\)
Mk nhầm chút nhé..
x không bằng -4 nhé. Nếu x bằng -4 thì bài sẽ như thế này:
\(-4\le x\le6\)
a)\(\dfrac{6^6+6^3.3^3+3^6}{-73}\)\(=\dfrac{2^6.3^6+2^3.3^3.3^3+3^6}{-73}=\dfrac{2^6.3^6+2^3.3^6+3^6.1}{-73}\)
\(=\dfrac{3^6.\left(2^6+2^3+1\right)}{-73}=\dfrac{3^6\left(64+8+1\right)}{-73}=^{ }\)\(\dfrac{3^6.73}{-73}=\dfrac{3^6}{-1}=-3^6\)
b)\(\dfrac{8^{20}+4^{20}}{4^{25}+64^5}=\dfrac{2^{60}+2^{40}}{2^{50}+2^{30}}=\dfrac{2^{40}.\left(2^{20}+1\right)}{2^{30}.\left(2^{20}+1\right)}=\dfrac{2^{40}}{2^{30}}=2^{10}=1024\)
c)\(\dfrac{45^{10}.5^{20}}{75^{15}}=\dfrac{\left(3^2\right)^{10}.5^{10}.5^{20}}{\left(5^2\right)^{15}.3^{15}}=\dfrac{3^{20}.5^{30}}{5^{30}.3^{15}}=3^5=243\)
Bài 1:
c) \(\dfrac{5^4.20^4}{25^5.4^5}=\dfrac{5^4.4^4.5^4}{5^{10}.4^5}=\dfrac{5^8.4^4}{5^8.5^2.4^4.4}=\dfrac{1}{25.4}=\dfrac{1}{100}\)
Bài 2: a) \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{5}\right)^{2004}\ge0\forall x\\\left(y+0,4\right)^{100}\ge0\forall y\\\left(z-3\right)^{678}\ge0\forall z\end{matrix}\right.\) \(\Rightarrow\left(x-\dfrac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}\ge0\forall x,y,z\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{5}\right)^{2004}=0\\\left(y+0,4\right)^{100}=0\\\left(z-3\right)^{678}=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=-\dfrac{2}{5}\\z=3\end{matrix}\right.\)
Vậy ...
Bài 3: \(M=\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^{11}}=\dfrac{2^{30}+2^{20}}{2^{12}+2^{22}}\)
\(=\dfrac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(2^{10}+1\right)}=\dfrac{2^{20}}{2^{12}}=2^8=256.\)
Vậy \(M=256.\)
Mấy bài kia dễ tự làm.
\(3)\)
\(\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^{11}}=\dfrac{2^{30}+2^{20}}{2^{12}+2^{22}}=\dfrac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(2^{10}+1\right)}=\dfrac{2^{20}}{2^{12}}=2^8=256\)\(4)\)
\(2^{24}=\left(2^6\right)^4=64^4;3^{16}=\left(3^4\right)^4=81^4\)
\(\Leftrightarrow2^{24}< 3^{16}\)
Tính:
a)\(\dfrac{8^{20}.4^{10}}{16^{21}}\)
\(=\dfrac{\left(2^3\right)^{20}.\left(2^2\right)^{10}}{\left(2^4\right)^{21}}\)
\(=\dfrac{2^{60}.2^{20}}{2^{84}}\)
\(=\dfrac{2^{80}}{2^{84}}\)
\(=2^{80-84}\)
\(=2^{-4}\)
\(=\dfrac{1}{16}\)
Tính:
b)\(\dfrac{8^{20}+4^{20}}{4^{25}+64^5}\)
\(=\dfrac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}\)
\(=\dfrac{2^{60}+2^{20}}{2^{50}+2^{30}}\)
\(=\dfrac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}\)
\(=\dfrac{2^{40}}{2^{30}}\)
\(=2^{40-30}\)
\(=2^{10}\)
\(=1024\)