K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2018

1/28 chu so a

AH
Akai Haruma
Giáo viên
28 tháng 9 2024

Bài 1: Gọi số cần tìm là $\overline{ab}$ với $a,b$ là số tự nhiên có 1 chữ số, $a>0$

Theo bài ra ta có:

$\overline{ab}-\overline{ba}=10a+b-(10b+a)=9(a-b)$ là 1 scp.

Mà $9$ cũng là 1 scp nên để $9(a-b)$ là scp thì $a-b$ là scp.

$a,b$ là các số tự nhiên có 1 chữ số nên $a-b<10$

$\Rightarrow a-b\in\left\{0,1,4,9\right\}$
Nếu $a-b=0$ thì $a=b$. Ta có các số $11,22,33,44,55,....,99$ đều thỏa mãn.

Nếu $a-b=1$ thì $a=b+1$. Ta có các số $10, 21,32,43,54,65,76,87,98$ đều thỏa mãn.

Nếu $a-b=4$ thì $a=b+4$. Ta có các số $40, 51, 62, 73, 84, 95$ đều thỏa mãn 

Nếu $a-b=9$ thì $a=b+9$. Ta có số $90$ thỏa mãn.

AH
Akai Haruma
Giáo viên
28 tháng 9 2024

Bài 2: Gọi số cần tìm là $\overline{ab}$ với $a,b$ là số tự nhiên có 1 chữ số, $a>0$.

Theo bài ra ta có:

$\overline{ab}+\overline{ba}=10a+b+10b+a=11(a+b)$

Để tổng này là scp thì $a+b=11m^2$ với $m$ là số tự nhiên.

$\Rightarrow a+b\vdots 11$.

Mà $a,b$ là số tự nhiên có 1 chữ số nên $a+b< 20$

$\Rightarrow a+b=11$

$\Rightarrow (a,b)=(2,9), (3,8), (4,7), (5,6), (6,5), (7,4), (8,3), (9,2)$

Vậy số thỏa mãn là $29,38,47,56,65,74,83,92$

11 tháng 10 2015

Gọi số cần tìm là ab (a khác 0; a,b < 10)

ta có:ab + ba = 10a + b + 10b + aq = 11a + 11b = 11(a + b) 

Vì a + b là số chính phương nên a + b chia hết cho 11.

mà 1\(\le\) a<10

0\(\le\) b<10

=> 1\(\le\) a+b<20

=>a+b=11

ta có bảng sau:

\(<table border="1" cellspacing="1" cellpadding="1" style="width:500px"><tbody><tr><td>a</td><td>2</td><td>3</td><td>4</td><td>5</td><td>6</td><td>7</td><td>8</td><td>9</td></tr><tr><td>b</td><td>9</td><td>8</td><td>7</td><td>6</td><td>5</td><td>4</td><td>3</td><td>2</td></tr></tbody></table>\)

=> có 8 số thỏa mãn đề a

 

17 tháng 1 2022

biết hiệu các bình phương thôi hả bạn

 

 

17 tháng 1 2022

hiệu của bình phương số đó và số viết theo thứ tự ngược lại nha.

6 tháng 8 2015

Giờ ta phải chứng minh cho 1 số chính phương chia cho 3 chỉ dư 0 hoặc 1 
Với số tự nhiên a có dạng a=3k±1 
=> a²=(3k±1)²=9k²±6k+1 chia cho 3 dư 1 
Với a⁞3 thì chắc chắn a² chia cho 3 dư 0 rồi. 
Xong. 
Việc còn lại của bạn bây giờ quá đơn giản, chứng minh cho số đó chia cho 3 dư 2. 
Nếu 1000 mảnh bìa đó xếp thành 1 số thì nó se có tổng các chữ số là: 
(2+1001)x1000/2 = 501500 chia cho 3 dư 2. Vậy số ta vừa ghép được chia cho 3 dư 2. 
=> số đó không phải số chính phương. 

3 tháng 12 2017

nguyễn hoàng vũ chép trên mạng