K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2019

32, \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)

=\(\sqrt{9-2.3.\sqrt{6}+6}+\sqrt{33-2.3.2\sqrt{6}}\)

=\(\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{24-2.3.2\sqrt{6}+9}\)

=\(\left|3-\sqrt{6}\right|+\sqrt{\left(2\sqrt{6}-3\right)^2}\)

=\(3-\sqrt{6}+\left|2\sqrt{6}-3\right|\)=\(3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)

33, \(\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}=\sqrt{\left(\sqrt{5}-1\right)^2}+\sqrt{\left(\sqrt{5}+1\right)^2}=\left|\sqrt{5}-1\right|+\sqrt{5}+1=\sqrt{5}-1+\sqrt{5}+1=2\sqrt{5}\)

34, \(\sqrt{8-2\sqrt{15}}-\sqrt{23-4\sqrt{15}}\)

=\(\sqrt{8-2.\sqrt{3}.\sqrt{5}}-\sqrt{23-2.2.\sqrt{5}.\sqrt{3}}\)

=\(\sqrt{5-2\sqrt{3}.\sqrt{5}+3}-\sqrt{\left(2\sqrt{5}\right)^2-2.2\sqrt{5}.\sqrt{3}+3}\)

=\(\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(2\sqrt{5}-\sqrt{3}\right)^2}\)

=\(\left|\sqrt{5}-\sqrt{3}\right|-\left|2\sqrt{5}-\sqrt{3}\right|=\sqrt{5}-\sqrt{3}-2\sqrt{5}+\sqrt{3}=-\sqrt{5}\)

23 tháng 8 2019

35,\(\sqrt{31-8\sqrt{15}}+\sqrt{24-6\sqrt{15}}\)

=\(\sqrt{16-2.4.\sqrt{15}+15}+\sqrt{15-2.3.\sqrt{15}+9}\)

=\(\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}-3\right)^2}\)

=\(\left|4-\sqrt{15}\right|+\left|\sqrt{15}-3\right|\)

=\(4-\sqrt{15}+\sqrt{15}-3\)

=1

36, \(\sqrt{49-5\sqrt{96}}-\sqrt{49+5\sqrt{96}}\)

=\(\sqrt{49-2.5.\sqrt{24}}-\sqrt{49+2.5\sqrt{24}}=\sqrt{25-2.5.\sqrt{24}+24}-\sqrt{25+2.5.\sqrt{24}+24}=\sqrt{\left(5-\sqrt{24}\right)^2}-\sqrt{\left(5+\sqrt{24}\right)^2}\)

=\(\left|5-\sqrt{24}\right|-\left|5+\sqrt{24}\right|=5-\sqrt{24}-5-\sqrt{24}=-2\sqrt{24}\)

37, \(\sqrt{3+2\sqrt{2}}+\sqrt{5-2\sqrt{6}}=\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)

=\(\left|\sqrt{2}+1\right|+\left|\sqrt{3}-\sqrt{2}\right|=\sqrt{2}+1+\sqrt{3}-\sqrt{2}=\sqrt{3}+1\)

12 tháng 8 2019

\(\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}=\left(2\sqrt{5}+3\right)-\left(2\sqrt{5}-3\right)=6\)

\(\sqrt{8-2\sqrt{15}}-\sqrt{23-4\sqrt{15}}=\left(\sqrt{5}-\sqrt{3}\right)-\left(2\sqrt{5}-\sqrt{3}\right)=-\sqrt{5}\)

\(\sqrt{8-12\sqrt{5}}+\sqrt{48+6\sqrt{15}}=\left(\sqrt{5}-\sqrt{3}\right)+\left(3\sqrt{5}+\sqrt{3}\right)=4\sqrt{5}\)

\(\sqrt{49-5\sqrt{96}}+\sqrt{49+5\sqrt{96}}=\left(5-2\sqrt{6}\right)+\left(5+2\sqrt{6}\right)=10\)

\(\sqrt{15-6\sqrt{15}}+\sqrt{33-12\sqrt{6}}\) đề này sai ạ

\(\sqrt{16-6\sqrt{7}}+\sqrt{64-24\sqrt{7}}=\left(3-\sqrt{7}\right)+\left(6-2\sqrt{7}\right)=9-3\sqrt{7}\)

\(\sqrt{14-6\sqrt{5}}+\sqrt{14+6\sqrt{5}}=\left(3-\sqrt{5}\right)+\left(3+\sqrt{5}\right)=6\)

\(\sqrt{1-6\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)

\(\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}=\left(2\sqrt{2}+5\right)+\left(2\sqrt{2}-5\right)=4\sqrt{2}\)

\(\sqrt{46-6\sqrt{5}}+\sqrt{29-12\sqrt{5}}=\left(3\sqrt{5}-1\right)+\left(2\sqrt{5}-3\right)=5\sqrt{5}-4\)

#Học tốt ạ

3 tháng 7 2018

\(\sqrt{49-5\sqrt{96}}+\sqrt{49+5\sqrt{96}}=\sqrt{25-2\cdot5\cdot2\sqrt{6}+24}+\sqrt{25-2\cdot5\cdot2\sqrt{6}+24}=\sqrt{\left(5+2\sqrt{6}\right)^2}+\sqrt{\left(5-2\sqrt{6}\right)^2}=5+2\sqrt{6}+5-2\sqrt{6}=10\) ---

\(\sqrt{13-\sqrt{160}}+\sqrt{53+4\sqrt{90}}=\sqrt{8-2\sqrt{5}\cdot\sqrt{8}+5}+\sqrt{45+2\cdot3\sqrt{5}\cdot\sqrt{8}+8}=\sqrt{\left(\sqrt{8}-\sqrt{5}\right)^2}+\sqrt{\left(3\sqrt{5}+\sqrt{8}\right)^2}=\sqrt{8}-\sqrt{5}+3\sqrt{5}+\sqrt{8}=2\sqrt{8}+2\sqrt{5}\)

---

\(\sqrt{11-6\sqrt{2}}+\sqrt{3-2\sqrt{2}}=\sqrt{9-2\cdot3\cdot\sqrt{2}+2}+\sqrt{2-2\sqrt{2}+1}=\sqrt{\left(3-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{2}-1\right)^2}=3-\sqrt{2}+\sqrt{2}-1=2\)

---

\(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}=\sqrt{9-2\cdot3\cdot\sqrt{6}+6}+\sqrt{27-2\cdot\sqrt{27}\cdot\sqrt{8}+8}=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(3\sqrt{3}-2\sqrt{2}\right)^2}=3-\sqrt{6}+3\sqrt{3}-2\sqrt{2}\)

---

\(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}=\sqrt{9-2\cdot3\cdot2\sqrt{2}+8}+\sqrt{9+2\cdot2\cdot2\sqrt{2}+8}=\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{\left(3+2\sqrt{2}\right)^2}=3-2\sqrt{2}+3+2\sqrt{2}=6\)

---

3 tháng 7 2018

\(\sqrt{49-5\sqrt{96}}+\sqrt{49+5\sqrt{96}}\)

\(=\sqrt{25-2\times5\sqrt{24}+24}+\sqrt{25+2\times5\sqrt{24}+24}\)

\(=\sqrt{\left(5-\sqrt{24}\right)^2}+\sqrt{\left(5+\sqrt{24}\right)^2}\)

\(=5-\sqrt{24}+5+\sqrt{24}\)

\(=10\)

14 tháng 8 2020

a, \(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}\)

= \(\sqrt{3^2-2.3.\sqrt{6}+\left(\sqrt{6}\right)^2}+\sqrt{6^2-2.6.\sqrt{6}+\left(\sqrt{6}\right)^2}\)

= \(\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(6-\sqrt{6}\right)^2}\)

= \(\left|3-\sqrt{6}\right|+\left|6-\sqrt{6}\right|\)

= \(3-\sqrt{6}+6-\sqrt{6}\)

= \(9-2\sqrt{6}\)

b. Đặt B = \(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}\)

Nhận xét : B > 0 , bình phương hai vế ta được :

\(B^2=\left(\sqrt{17-3\sqrt{32}}\right)^2+\left(\sqrt{17+3\sqrt{32}}\right)^2\)

\(B^2=17-3\sqrt{32}+17+3\sqrt{32}+2\sqrt{\left(17-3\sqrt{32}\right)\left(17+3\sqrt{32}\right)}\)

\(B^2=34+2\sqrt{17^2-\left(3\sqrt{32}\right)^2}\)

\(B^2=34+2\sqrt{289-288}\)

\(B^2=34+2=36\)

=> \(B=\pm\sqrt{36}\) mà B > 0 nên \(B=\sqrt{36}=6\)

c, Đặt C = \(\sqrt{49-5\sqrt{96}}+\sqrt{49+5\sqrt{96}}\)

Nhận xét : C > 0 , bình phương hai vế ta đươc :

\(C^2=\left(\sqrt{49-5\sqrt{96}}\right)^2+\left(\sqrt{49+5\sqrt{96}}\right)^2\)

\(C^2=49-5\sqrt{96}+49+5\sqrt{96}+2\sqrt{\left(49-5\sqrt{96}\right)\left(49+5\sqrt{96}\right)}\)

\(C^2=98+2\sqrt{49^2-\left(5\sqrt{96}\right)^2}\)

\(C^2=98+2\sqrt{2401-2400}\)

\(C^2=98+2=100\)

=> \(C=\pm\sqrt{100}\) mà C > 0 nên \(C=\sqrt{100}=10\)

a) Ta có: \(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}\)

\(=\sqrt{9-2\cdot3\cdot\sqrt{6}+6}+\sqrt{27-2\cdot3\sqrt{3}\cdot2\sqrt{2}+8}\)

\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(3\sqrt{3}-2\sqrt{2}\right)^2}\)

\(=\left|3-\sqrt{6}\right|+\left|3\sqrt{3}-2\sqrt{2}\right|\)

\(=3-\sqrt{6}+3\sqrt{3}-2\sqrt{2}\)(Vì \(\left\{{}\begin{matrix}3>\sqrt{6}\\3\sqrt{3}>2\sqrt{2}\end{matrix}\right.\))

b) Ta có: \(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}\)

\(=\frac{\sqrt{34-6\sqrt{32}}+\sqrt{34+6\sqrt{32}}}{\sqrt{2}}\)

\(=\frac{\sqrt{18-2\cdot3\sqrt{2}\cdot4+16}+\sqrt{18+2\cdot3\sqrt{2}\cdot4+16}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(3\sqrt{2}-4\right)^2}+\sqrt{\left(3\sqrt{2}+4\right)^2}}{\sqrt{2}}\)

\(=\frac{\left|3\sqrt{2}-4\right|+\left|3\sqrt{2}+4\right|}{\sqrt{2}}\)

\(=\frac{3\sqrt{2}-4+3\sqrt{2}+4}{\sqrt{2}}\)(Vì \(3\sqrt{2}>4>0\))

\(=\frac{6\sqrt{2}}{\sqrt{2}}=6\)

31 tháng 7 2017

https://hoc24.vn/hoi-dap/question/407636.html

\(M=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)

\(=\sqrt{4+5}\)

= 9

~ ~ ~ ~ ~

\(M=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-8\sqrt{2}}}}}\)

\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{\left(4-\sqrt{2}\right)^2}}}}\)

\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+4-\sqrt{2}}}}\)

\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)

\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{3}-1}}\)

\(=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)

\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\sqrt{6+2\sqrt{3}-2}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=\sqrt{3}+1\)

31 tháng 7 2017

\(M=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}\)

\(=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(=\sqrt{\sqrt{5}-\sqrt{5}+1}\)

= 1

AH
Akai Haruma
Giáo viên
1 tháng 12 2019

a)

\((2\sqrt{5}-\sqrt{7})(2\sqrt{5}+\sqrt{7})=(2\sqrt{5})^2-(\sqrt{7})^2=13\)

b)

\((\sqrt{5-2\sqrt{6}}+\sqrt{2})\sqrt{3}=(\sqrt{2+3-2\sqrt{2.3}}+\sqrt{2})\sqrt{3}\)

\(=(\sqrt{(\sqrt{3}-\sqrt{2})^2}+\sqrt{2})\sqrt{3}=(\sqrt{3}-\sqrt{2}+\sqrt{2})\sqrt{3}=\sqrt{3}.\sqrt{3}=3\)

c)

\(\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}=\sqrt{2^2+3-2.2\sqrt{3}}+\sqrt{2^2+3+2.2\sqrt{3}}\)

\(=\sqrt{(2-\sqrt{3})^2}+\sqrt{(2+\sqrt{3})^2}=2-\sqrt{3}+2+\sqrt{3}=4\)

AH
Akai Haruma
Giáo viên
1 tháng 12 2019

d)

\(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}=\sqrt{3^2+6-2.3\sqrt{6}}+\sqrt{9+24-2\sqrt{9.24}}\)

\(=\sqrt{(3-\sqrt{6})^2}+\sqrt{(\sqrt{24}-3)^2}=3-\sqrt{6}+\sqrt{24}-3\)

\(=\sqrt{6}\)

e)

\(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}=\sqrt{\frac{6+2\sqrt{5}}{2}}+\sqrt{\frac{6-2\sqrt{5}}{2}}\)

\(=\sqrt{\frac{5+1+2\sqrt{5.1}}{2}}+\sqrt{\frac{5+1-2\sqrt{5.1}}{2}}=\sqrt{\frac{(\sqrt{5}+1)^2}{2}}+\sqrt{\frac{(\sqrt{5}-1)^2}{2}}\)

\(=\frac{\sqrt{5}+1}{\sqrt{2}}+\frac{\sqrt{5}-1}{\sqrt{2}}=\sqrt{10}\)

g)

\(\sqrt{8-2\sqrt{15}}-\sqrt{23-4\sqrt{15}}=\sqrt{3+5-2\sqrt{3.5}}-\sqrt{20+3-2\sqrt{20.3}}\)

\(=\sqrt{(\sqrt{5}-\sqrt{3})^2}-\sqrt{(\sqrt{20}-\sqrt{3})^2}\)

\(=\sqrt{5}-\sqrt{3}-(\sqrt{20}-\sqrt{3})=\sqrt{5}-\sqrt{20}=-\sqrt{5}\)

27 tháng 7 2017

b) \(\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)

\(=\dfrac{\sqrt{8+2\sqrt{15}}}{\sqrt{2}}+\dfrac{\sqrt{8-2\sqrt{15}}}{\sqrt{2}}-\sqrt{2}.\sqrt{6-2\sqrt{5}}\)

\(=\dfrac{\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}}{\sqrt{2}}+\dfrac{\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}}{\sqrt{2}}-\sqrt{2}.\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{2}}+\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}-\sqrt{2}.\left(\sqrt{5}-1\right)\)

\(=\dfrac{\left(\sqrt{5}+\sqrt{3}\right)+\left(\sqrt{5}-\sqrt{3}\right)}{\sqrt{2}}-\sqrt{10}+\sqrt{2}\)

\(=\dfrac{\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{3}}{\sqrt{2}}-\sqrt{10}+\sqrt{2}=\dfrac{2\sqrt{5}}{\sqrt{2}}-\sqrt{10}+\sqrt{2}\)

\(=\sqrt{10}-\sqrt{10}+\sqrt{2}=\sqrt{2}\)

e) \(C=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\) \(C=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(C=\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}\)

\(C=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(C=\sqrt{\sqrt{5}-\sqrt{5}+1}=\sqrt{1}=1\)

câu a ; f chưa nghỉ ra

27 tháng 7 2017

co giup mk nha

25 tháng 7 2019
https://i.imgur.com/g7mbF2P.jpg
19 tháng 7 2018

1. \(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\)

\(=\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)

\(=\sqrt{2}+\sqrt{3}-\sqrt{3}+\sqrt{2}\)

\(=2\sqrt{2}\)