K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2015

\(10+\sqrt{60}-\sqrt{24}-\sqrt{40}\)

\(=10+2\sqrt{15}-2\sqrt{6}-2\sqrt{10}\)

\(=10+2\sqrt{3}.\sqrt{5}-2\sqrt{2}.\sqrt{3}-2\sqrt{2}.\sqrt{5}\)

\(=3+5+2+...\)

\(=\left(\sqrt{3}+\sqrt{5}-\sqrt{2}\right)^2\)

\(\Rightarrow P=-\sqrt{2}+\sqrt{3}+\sqrt{5}\)

8 tháng 7 2015

haha chắc chắn là rút gọn là ra thuj

21 tháng 12 2016

\(A=\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}\)

\(=\sqrt{10+2\sqrt{6}+2\sqrt{10}+2\sqrt{15}}\)

\(=\sqrt{2+3+5+2\left(\sqrt{2.3}+\sqrt{2.5}+\sqrt{3.5}\right)}\)

\(=\sqrt{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)^2}\)

\(=\sqrt{2}+\sqrt{3}+\sqrt{5}\)

25 tháng 10 2019

\(P=\sqrt{\left(\sqrt{2}+\sqrt{5}+\sqrt{7}\right)^2}=\left|\sqrt{2}+\sqrt{5}+\sqrt{7}\right|=\sqrt{2}+\sqrt{5}+\sqrt{7}\)

5 tháng 2 2017

\(\sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}\)

\(=\sqrt{2+5+7+2\sqrt{2.5}+2\sqrt{2.7}+2\sqrt{5.7}}\)

\(=\sqrt{\left(\sqrt{2}+\sqrt{5}+\sqrt{7}\right)^2}=\sqrt{2}+\sqrt{5}+\sqrt{7}\)

\(\Rightarrow a+b+c=2+5+7=14\)

29 tháng 8 2019

a/ \(\sqrt{2}+\sqrt{6}\)

b/ Sửa đề:

\(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}=1\)

c/ \(1+\sqrt{2}+\sqrt{5}\)

29 tháng 8 2019

giải rõ ra hộ mình với

21 tháng 8 2016

\(=\left(2\sqrt{3}+3\sqrt{2}\right)\sqrt{5}+\sqrt{2^3\sqrt{3}}\)

21 tháng 8 2016

Ta có √[ 5 + 2 + 3 + 2√(2×3) + 2√(2×5) + 2√(3×5)] = √[(√2 + √3 + √5)2] = √2 + √3 + √5

a: \(=\sqrt{3a}:\sqrt{b}\)

b: \(=\sqrt{a}:\sqrt{xy}\)

29 tháng 8 2019

giải ra chưa chỉ mình với

5 tháng 9 2015

Bạn áp dụng hằng đẳng thức (a+b+c)^2= a^2+b^2+c^2+2(ab+ac+bc)