K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2017

Vì \(x+y+z=1\) nên ta có:

\(\left(x+y+z\right)^2=1^2\)

\(\Rightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=1\)

\(\Rightarrow x^2+y^2+z^2+2.1=1\)  (vì \(xy+xz+yz=1\))

\(\Rightarrow x^2+y^2+z^2=-1\)

Tuy nhiên nhìn vào đẳng thức trên ta thấy vô lý vì vế trái luôn lơn hơn hoặc bằng 0.

Ta sẽ thấy ngay không thể có 3 số x, y, z thỏa mãn x + y + x = 1 và xy + xz + yz =1 được. Thật vậy:

Nếu x + y + z = 1 thì:

\(1^2=\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)

      \(=\frac{1}{2}\left(x^2+y^2\right)+\frac{1}{2}\left(y^2+z^2\right)+\frac{1}{2}\left(z^2+x^2\right)+2\left(xy+yz+zx\right)\)

        \(\ge xy+yz+zx+2\left(xy+yz+zx\right)=3\left(xy+yz+zx\right)\)

Suy ra \(xy+yz+zx\le\frac{1}{3}\)

Tức là nếu \(x+y+z=1\) thì \(xy+yz+zx\le\frac{1}{3}\) và \(xy+yz+zx\) không thể bằng 1.

5 tháng 6 2019

#)Góp ý :

   Mời bạn tham khảo :

   http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/

   Mình sẽ gửi link này về chat riêng cho bạn !

6 tháng 6 2019

Tham khảo qua đây nè :

http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%Ân-b%C3%ACnh-thu%E1%BA%ADn-2016-2017

tk cho mk nhé

16 tháng 9 2017

lập phương giả thiết

kết quả là 3

25 tháng 7 2020

Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Rightarrow\hept{\begin{cases}1+\frac{x}{y}+\frac{x}{z}=0\\\frac{y}{x}+1+\frac{y}{z}=0\\\frac{z}{x}+\frac{z}{y}+1=0\end{cases}}\)

\(\Rightarrow\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}=-3\)

mà \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Rightarrow\frac{yz+xz+xy}{xyz}=0\)

\(\Rightarrow yz+xz+xy=0\)

\(\Rightarrow\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\left(yz+xz+xy\right)=0\)

\(\Rightarrow\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}+\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}=0\)

\(\Rightarrow\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}=3\)

\(\Rightarrow\frac{xy}{z^2}+\frac{yz}{x^2}+\frac{xz}{y^2}=3\)

Học tốt

25 tháng 7 2020

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

<=> \(\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\)

<=> \(\left(\frac{1}{x}+\frac{1}{y}\right)^3=\left(-\frac{1}{z}\right)^3\)

<=> \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{3}{x^2y}+\frac{3}{xy^2}=-\frac{1}{z^3}\)

<=> \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=-\frac{3}{xy}\left(\frac{1}{x}+\frac{1}{y}\right)\)

<=> \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=-\frac{3}{xy}.\left(-\frac{1}{z}\right)\)

<=> \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)

Khi đó: P = \(\frac{xy}{z^2}+\frac{yz}{x^2}+\frac{xz}{y^2}=\frac{xyz}{z^3}+\frac{xyz}{x^3}+\frac{xyz}{y^3}=xyz.\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz\cdot\frac{3}{xyz}=3\)

24 tháng 3 2016

\(\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)\)

dung hằng đẳng thức đẹp :\(x^3+y^3+z^3=3xyz\) với \(x+y+z=0\)

\(\Rightarrow xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz\frac{3}{xyz}=3\)