K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2018

a, Ta có: cot 24 0 = tan 66 0 ; cot 57 0 = tan 33 0 ; cot 30 0 = tan 60 0

=> tan 16 0 < tan 33 0 < tan 60 0 < tan 66 0 < tan 80 0

=> tan 16 0 < cot 57 0 < cot 30 0 < cot 24 0 < tan 80 0

b, Ta có:  cos 2 α = 1 - sin 2 α =>  cosα =  2 6 5 , tanα =  sin α cos α = 6 12 và cotα =  cos α sin α = 2 6

3 tháng 7 2023

Cách 1: \(\tan^2\alpha+\cot^2\alpha=\left(\tan\alpha+\cot\alpha\right)^2-2\tan\alpha\cot\alpha\) \(=2^2-2=2\) 

 \(\tan^3\alpha+\cot^3\alpha=\left(\tan\alpha+\cot\alpha\right)^3-3\tan\alpha\cot\alpha\left(\tan\alpha+\cot\alpha\right)\) \(=2^3-3.1.2=2\)

Cách 2: Ta thấy \(\cot\alpha=\dfrac{1}{\tan\alpha}\) nên ta có \(\tan\alpha+\dfrac{1}{\tan\alpha}=2\) (*). Áp dụng BDT AM-GM, ta có \(\tan\alpha+\dfrac{1}{\tan\alpha}\ge2\sqrt{\tan\alpha.\dfrac{1}{\tan\alpha}}=2\), do đó (*) xảy ra khi và chỉ khi \(\tan\alpha=\dfrac{1}{\tan\alpha}\Leftrightarrow\tan^2\alpha=1\Leftrightarrow\tan\alpha=1\) \(\Rightarrow\cot\alpha=1\). Từ đó dễ dàng tính được \(\tan^2\alpha+\cot^2\alpha=\tan^3\alpha+\cot^3\alpha=2\)

(Tuyệt đối không được dùng cách 2 khi \(\tan\alpha\) hoặc \(\cot\alpha\) âm nhé, vì bất đẳng thức AM-GM chỉ dùng cho số dương thôi.)

30 tháng 6 2023

Chỗ này phải sửa thành 2 mới đúng nhé.

a: sin a=2/3

=>cos^2a=1-(2/3)^2=5/9

=>\(cosa=\dfrac{\sqrt{5}}{3}\)

\(tana=\dfrac{2}{3}:\dfrac{\sqrt{5}}{3}=\dfrac{2}{\sqrt{5}}\)

\(cota=1:\dfrac{2}{\sqrt{5}}=\dfrac{\sqrt{5}}{2}\)

b: cos a=1/5

=>sin^2a=1-(1/5)^2=24/25

=>\(sina=\dfrac{2\sqrt{6}}{5}\)

\(tana=\dfrac{2\sqrt{6}}{5}:\dfrac{1}{5}=2\sqrt{6}\)

\(cota=\dfrac{1}{2\sqrt{6}}=\dfrac{\sqrt{6}}{12}\)

c: cot a=1/tana=1/2

\(1+tan^2a=\dfrac{1}{cos^2a}\)

=>1/cos^2a=1+4=5

=>cos^2a=1/5

=>cosa=1/căn 5

\(sina=\sqrt{1-cos^2a}=\dfrac{2}{\sqrt{5}}\)

1: 

a: sin a=căn 3/2

\(cosa=\sqrt{1-sin^2a}=\sqrt{1-\dfrac{3}{4}}=\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\)

\(tana=\dfrac{\sqrt{3}}{2}:\dfrac{1}{2}=\sqrt{3}\)

cot a=1/tan a=1/căn 3

b: \(tana=2\)

=>cot a=1/tan a=1/2

\(1+tan^2a=\dfrac{1}{cos^2a}\)

=>\(\dfrac{1}{cos^2a}=5\)

=>cos^2a=1/5

=>cosa=1/căn 5

\(sina=\sqrt{1-cos^2a}=\sqrt{\dfrac{4}{5}}=\dfrac{2}{\sqrt{5}}\)

c: \(cosa=\sqrt{1-\left(\dfrac{5}{13}\right)^2}=\dfrac{12}{13}\)

tan a=5/13:12/13=5/12

cot a=1:5/12=12/5

6 tháng 7 2018

bài này không có giới hạn góc sao tìm được bạn .