K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 11 2022

Lời giải:

$3x^2-4xy+2y^2=3$

$\Leftrightarrow 2(x^2-2xy+y^2)+x^2=3$

$\Leftrightarrow 2(x-y)^2+x^2=3$
$\Leftrightarrow 2(x-y)^2=3-x^2\leq 3$

Mà $2(x-y)^2$ là số chính phương chẵn nên $2(x-y)^2=0$ hoặc $2(x-y)^2=2$

Nếu $2(x-y)^2=0$

$x^2=3-2(x-y)^2=3\Rightarrow x=\pm \sqrt{3}$ không là số chính phương (loại)

Nếu $2(x-y)^2=2$

$\Leftrightarrow x-y=\pm 1(1)$

$x^2=3-2(x-y)^2=1\Rightarrow x=\pm 1(2)$

Từ $(1); (2)\Rightarrow (x,y)=(1,0), (1,2); (-1, -2); (-1,0)$

13 tháng 8 2020

Bài làm:

Ta có: \(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left[\left(x+y\right)^3+z^3\right]-\left[3xy\left(x+y\right)+3xyz\right]\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-zx-yz+z^2-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\)

\(=x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2\)

\(=2\left(x^2+y^2+z^2-xy-yz-zx\right)\)

Từ đó thay vào P rút ra:

\(P=\frac{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)}{2\left(x^2+y^2+z^2-xy-yz-zx\right)}=\frac{2020}{2}=1010\)

Vậy P = 1010

19 tháng 11 2017

đề

19 tháng 11 2017

Tìm x,y,z biết

24 tháng 2 2020

a)\(\left(4x^3-xy^2+y^3\right)\left(x^2y+2xy^2-2y^3\right)\)

\(=x^2y\left(4x^3-xy^2+y^3\right)+2xy^2\left(4x^3-xy^2+y^3\right)\)

\(-2y^3\left(4x^3-xy^2+y^3\right)\)

\(=4x^5y-x^3y^3+x^2y^4+8x^4y^2-2x^2y^4+2xy^5\)

\(-8x^3y^3+2xy^5-2y^6\)

\(=-2y^6+4x^5y+\left(2xy^5+2xy^5\right)+8x^4y^2+\left(x^2y^4-2x^2y^4\right)\)

\(-\left(x^3y^3+8x^3y^3\right)\)

\(=-2y^6+4x^5y+4xy^5+8x^4y^2-x^2y^4-9x^3y^3\)

24 tháng 2 2020

b) 

(!)  \(2\left(x+y\right)^2-7\left(x+y\right)+5\)

\(=2\left(x+y\right)^2-2\left(x+y\right)-5\left(x+y\right)+5\)

\(=2\left(x+y\right)\left(x+y-1\right)-5\left(x+y-1\right)\)

\(=\left(2x+2y-5\right)\left(x+y-1\right)\)

(!!) \(\left(x+y+z\right)^2-x^2-y^2-z^2\)

\(=\left(x^2+y^2+z^2+2xy+2yz+2zx\right)-x^2-y^2-z^2\)

\(=2\left(xy+yz+zx\right)\)

b: \(=3\left[\left(x+y\right)^2-2xy\right]-2\left[\left(x-y\right)^3+3xy\left(x-y\right)\right]\)

\(=3\left(1-2xy\right)-2\left(1+3xy\right)\)

\(=3-6xy-2-6xy=-12xy+1\)

c: \(=\left(x+y\right)^3-3\left(x^2+y^2+2xy\right)+3\left(x+y\right)+2012\)

\(=101^2-3\cdot101^2+3\cdot101+2012\)

=1002013

17 tháng 8 2017

Câu a :

\(VT=\) \(\left(x-1\right)\left(x^2+x+1\right)=x^3-1^3=VP\)

Câu b :

\(VT=\)\(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x^4-y^4=VP\)

Tương tự bạn khai triển là ra nhé

17 tháng 8 2017

a) \(\left(x-1\right)\left(x^2+x+1\right)\)

=\(x^3+x^2+x-x^2-x-1=x^3-1\)

\(\RightarrowĐPCM\)

b)\(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)\)

\(=x^4-x^3y+x^3y-x^2y^2+x^2y^2-xy^3+xy^3-y^4=x^4-y^4\)

29 tháng 11 2016

(chứng minh rằng\) x y 3 −1 - Online Math

13 tháng 5 2020

Ta có \(y^3-1=\left(y-1\right)\left(y^2+y+1\right)=-x\left(y^2+y+1\right)\)

(vì \(xy\ne0\Rightarrow x,y\ne0\))

\(\Rightarrow x-1\ne0;y-1\ne0\)

\(\Rightarrow\frac{x}{y^3-1}=\frac{-1}{y^2+y+1}\)

\(x^3-1=\left(x-1\right)\left(x^2-x+1\right)=-y\left(x^2-x+1\right)\Rightarrow\frac{y}{x^3-1}=\frac{-1}{x^2+x+1}\)

\(\Rightarrow\frac{x}{y^3-1}+\frac{y}{x^3-1}=\frac{-1}{y^2+y+1}+\frac{-1}{x^2+x+1}\)

\(=-\left(\frac{x^2+x+1+y^2+y+1}{\left(x^2+x+1\right)\left(y^2+y+1\right)}\right)=-\left(\frac{\left(x+y\right)^2-2xy+\left(x+y\right)+2}{x^2y^2+\left(x+y\right)^2-2xy+xy\left(x+y\right)+xy+\left(x+y\right)+1}\right)\)

\(=-\frac{4-2xy}{x^2y^2+3}\Rightarrow\frac{x}{y^3-1}+\frac{y}{x^3-1}-\frac{2\left(xy-2\right)}{x^2y^2+3}=0\)

21 tháng 11 2017

Hỏi đáp ToánHỏi đáp ToánHỏi đáp ToánHỏi đáp Toán

23 tháng 11 2017

Bn ko hiểu chỗ nào... Để mk giải thik cho...

9 tháng 7 2018

a/\(\left(x-1\right)\left(x^2+x+1\right)=x^3+x^2+x-x^2-x-1=x^3-1\left(đpcm\right)\)

b/ \(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x^4-x^3y+x^3y-x^2y^2+x^2y^2-xy^3+xy^3-y^4=x^4-y^4\left(đpcm\right)\)

c/ \(\left(x+y+z\right)^2=\left(x+y+z\right)\left(x+y+z\right)=x^2+xy+xz+y^2+xy+yz+z^2+zx+yz=x^2+y^2+z^2+2xy+2yz+2zx\left(đpcm\right)\)

d/ \(\left(x+y+z\right)^3=\left(x+y\right)^3+3\left(x+y\right)^2z+3z^2\left(x+y\right)+z^3\)

\(=\left(x+y\right)^3+3z\left(x^2+2xy+y^2\right)+3z^2\left(x+y\right)+z^3\)

\(=x^3+3x^2y+3xy^2+y^3+3x^2z+6xyz+3y^2z+3z^2x+3yz^2+z^3\)

\(=x^3+y^3+z^3+3xyz+3x^2y+3xy^2+3x^2z+3y^2z+3y^2x+3yz^2+3xyz\)

\(=x^3+y^3+z^3+\left(x+z\right)\left(3xy+3xz+3y^2+3yz\right)\)

\(=x^3+y^3+z^3+\left(x+z\right)\left[3x\left(y+z\right)+3y\left(y+z\right)\right]\)

\(=x^3+y^3+z^3+\left(x+z\right)\left(y+z\right)\left(3x+3y\right)\)

\(=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\) (đpcm)

9 tháng 7 2018

a, Xét vế trái ta có:

(x-1)(x^2+ x+1)=x^3+ x^2+ x- x^2- x-1

=x^3+ (x^2- x^2)+(x-x)-1

=x^3-1

Vậy...

b,Xét vế trái ta có:(x^3+ x^2y+ xy^2+ y^3)(x-y)

=x^4- x^3y+ x^3y- x^2- y^2+ x^2y^2- xy^3+ xy^3- y^4

=x^4-y^4

Vậy ........

c, Xét vế trái ta có:

(x+y+z)^2=(x+y+z)(x+y+z)

=x^2+ xy+ xz+ yx+y^2+ yz+ zx+ zy+ z^2

=x^2+ y^2+ z^2+ 2xy+ 2xz+ 2yz

Vậy...............

d, Xé vế trái ta có:

(x+y+x)^3=(x+y+z)(x+y+z)(x+y+z)(x+y+z)

=(x^2+y^2+z^2+2xy+2xz+2yz)(x+y+z)

=x^3+ xy^2+ xz^2+ 2x^2y+ 2xyz+ 2x^2z+ x^2y+ y^3+ yz^2+2xy^2+ 2y^2z+z^3+ 2xyz+ x^2z+ y^2z+2xyz+ 2yz^2+ 2xz^2

=x^3+ 3xy^2+ 6xy+ 3x^2y+3xz^2+ 3x^2z+ 3yz^2+ y^3z^3 (1)

Xét vế phải ta có:x^3+ y^3+ z^3+ 3(x+y)(x+y)(y+z)

=x^3+ y^3+ z^3+ 3(xy+ xz+ y^2+ yz)(z+x)

=x^3+ y^3+ z^3+ 3(xyz+ xz^2+ y^2z+ yz^2+ x^2y+ x^2z+ xy^2+xyz)

=x^2+ y^3+ z^3 +3(2xyz+ xz^2+ y^2z+ yz^2+x^2y+x^2z+ xy^2)

=x^3+ y^3+ z^3+6xyz+ 3xz^2+ 3y^2z+3yz^2+ 3x^2y+3x^2z+3xy^2(2)

Từ (1) và (2)=>.......

12 tháng 7 2019

bạn lấy vế phải trừ vế trái  , rồi nhóm lại ví dụ nhóm cái y+z-2x mũ 2 với y-z mũ 2 , rồi áp dụng hằng đẳng thức xong suy ra ... 

12 tháng 7 2019

xin lỗi vì không trình bài đủ nha , nó dài quá mình viết ra ko được , sr bạn nha