Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=cos^2a+cos^2b+2cosa.cosb+sin^2a+sin^2b+2sina.sinb\)
\(=2+2\left(cosa.cosb+sina.sinb\right)\)
\(=2+2.cos\left(a-b\right)=2+2.cos\frac{\pi}{3}=3\)
\(B=cos^2a+sin^2b+2cosa.sinb+cos^2b+sin^2a-2sina.cosb\)
\(=2-2\left(sina.cosb-cosa.sinb\right)\)
\(=2-2sin\left(a-b\right)=2-2sin\frac{\pi}{3}=2-\sqrt{3}\)
\(K=\frac{2sin\left(\frac{a+b}{2}\right).cos\left(\frac{a+b}{2}\right)+2sin\left(\frac{a+b}{2}\right).cos\left(\frac{a-b}{2}\right)}{2cos^2\left(\frac{a+b}{2}\right)-1+2cos\left(\frac{a+b}{2}\right).cos\left(\frac{a-b}{2}\right)+1}\)
\(K=\frac{sin\left(\frac{a+b}{2}\right)\left[cos\left(\frac{a+b}{2}\right)+cos\left(\frac{a-b}{2}\right)\right]}{cos\left(\frac{a+b}{2}\right)\left[cos\left(\frac{a+b}{2}\right)+cos\left(\frac{a-b}{2}\right)\right]}\)
\(K=\frac{sin\left(\frac{a+b}{2}\right)}{cos\left(\frac{a+b}{2}\right)}=tan\left(\frac{a+b}{2}\right)\)
0 < α < 90 => cosα > 0
Ta có: sin2α + cos2α = 1 => cosα = \(\frac{3}{5}\)
90 < β < 180 => cosβ < 0
Ta có: sin2β + cos2β = 1 => cosβ = \(\frac{-15}{17}\)
a = cos(α + β) = cosαcosβ - sinαsinβ = \(\frac{-77}{85}\)
1.
Ý tưởng thế này: nhìn vế trái phần đáp án có \(tan\left(a+b\right)\) nên cần biến đổi giả thiết xuất hiện \(sin\left(a+b\right)\) , vậy ta làm như sau:
\(sina.cos\left(a+b\right)=sin\left(a+b-a\right)\)
\(\Leftrightarrow sina.cos\left(a+b\right)=sin\left(a+b\right).cosa-cos\left(a+b\right).sina\)
\(\Leftrightarrow2sina.cos\left(a+b\right)=sin\left(a+b\right).cosa\)
\(\Rightarrow2tana=tan\left(a+b\right)\)
2.
Đây là 1 dạng cơ bản, nhìn vào lập tức cần ghép x với 3x (đơn giản vì \(\frac{x+3x}{2}=2x\))
\(A=\frac{sin3x-sinx+cos2x}{cosx-cos3x+sin2x}=\frac{2cos2x.sinx+cos2x}{2sin2x.sinx+sin2x}=\frac{cos2x\left(2sinx+1\right)}{sin2x\left(2sinx+1\right)}\)
\(=\frac{cos2x}{sin2x}=cot2x\)
Ta có \(F=sin^2\dfrac{\pi}{6}+...+sin^2\pi=\left(sin^2\dfrac{\pi}{6}+sin^2\dfrac{5\pi}{6}\right)+\left(sin^2\dfrac{2\pi}{6}+sin^2\dfrac{4\pi}{6}\right)+\left(sin^2\dfrac{3\pi}{6}+sin^2\pi\right)=\left(sin^2\dfrac{\pi}{6}+cos^2\dfrac{\pi}{6}\right)+\left(sin^2\dfrac{2\pi}{6}+cos^2\dfrac{2\pi}{6}\right)+\left(1+0\right)=1+1+1=3\)
\(sina+sinb=2sin\left(\frac{a+b}{2}\right)cos\left(\frac{a-b}{2}\right)=\frac{\sqrt{2}}{2}\)
\(\Rightarrow sin\left(\frac{a+b}{2}\right)cos\left(\frac{a-b}{2}\right)=\frac{\sqrt{2}}{4}\) (1)
\(cosa+cosb=2cos\left(\frac{a+b}{2}\right)cos\left(\frac{a-b}{2}\right)=\frac{\sqrt{6}}{2}\)
\(\Rightarrow cos\left(\frac{a+b}{2}\right)cos\left(\frac{a-b}{2}\right)=\frac{\sqrt{6}}{4}\) (2)
(1); (2) \(\Rightarrow tan\left(\frac{a+b}{2}\right)=\frac{\sqrt{3}}{3}\) \(\Rightarrow tan\left(a+b\right)=\sqrt{3}\) \(\Rightarrow a+b=60^0\)
\(\Rightarrow sin\left(a+b\right)=sin\left(60^0\right)=\frac{\sqrt{3}}{2}\)