Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) \(M=\frac{2019}{2020}+\frac{2020}{2021}\) và \(N=\frac{2019+2020}{2020+2021}\)
Ta có \(\frac{2019}{2020}>\frac{2019}{2020+2021}\)
\(\frac{2020}{2021}>\frac{2020}{2020+2021}\)
\(\Rightarrow\frac{2019}{2020}+\frac{2020}{2021}< \frac{2019+2020}{2020+2021}=N\)
\(\Rightarrow M>N\)
a) \(M=2020+2020^2+...+2020^{10}\)
\(M=\left(2020+2020^2\right)+\left(2020^3+2020^4\right)+...+\left(2020^9+2020^{10}\right)\)
\(M=2020\left(1+2020\right)+2020^3\left(1+2020\right)+...+2020^9\left(1+2020\right)\)
\(M=2021\left(2020+2020^3+...+2020^9\right)⋮2021\).
b) Bạn làm tương tự câu a).
b, \(A=2021+2021^2+...+2021^{2020}\)
\(=2021\left(1+2021\right)+...+2021^{2019}\left(1+2021\right)\)
\(=2022\left(2021+...+2021^{2019}\right)⋮2022\)
Vậy ta có đpcm
\(M=1-2+3-4+5-6+...+2019-2020\)
\(\Rightarrow M=-1+\left(-1\right)+\left(-1\right)+...\left(-1\right)\)
\(\Rightarrow M=\left(-1\right).1010=-1010\)
M= 1-2+3-4+5-6+...+2019-2020
M= (-1)+(-1)+(-1)+...+(-1)
Tổng số cặp số có ở trên là:
2020:2=1010
M=(-1).1010
M=(-1010)
\(a,\) Ta có: \(S=1+2+2^2+...+2^x\)
\(\Rightarrow2S=2+2^2+2^3+...+2^{x+1}\)
\(\Rightarrow2S-S=2^{x-1}-1\)
\(\Rightarrow S=2^{x+1}-1\)
\(\Rightarrow2^{x+1}-1=2^{2020-1}\)
\(\Rightarrow x=2019\)
Đặt A = \(\frac{2019^{2019}+1}{2019^{2020}+1}\)
=> \(2019A=\frac{2019^{2020}+2019}{2019^{2020}+1}=1+\frac{2018}{2019^{2020}+1}\)
Đặt B = \(\frac{2019^{2020}+1}{2019^{2021}+1}\)
=> \(2019B=\frac{2019^{2021}+2019}{2019^{2021}+1}=1+\frac{2018}{2019^{2021}+1}\)
Vì \(\frac{2018}{2019^{2020}+1}>\frac{2018}{2019^{2021}+1}\Rightarrow1+\frac{2018}{2019^{2020}+1}>1+\frac{2018}{2019^{2021}+1}\Rightarrow10A>10B\Rightarrow A>B\)
\(B=\frac{2^{2020}+2}{2^{2021}+2}=\frac{2\left(2^{2019}+1\right)}{2\left(2^{2020}+1\right)}=\frac{2^{2019}+1}{2^{2020}+1}\)
vậy A=B=\(\frac{2^{2019}+1}{2^{2020}+1}\)
(2021 * 2020) * (2020 * 2019) = (2021^2 - 2020^2) * (2020^2 - 2019^2)
= 4041 * 4039 = 4041^2 - 4039^2 = 16160