K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2016

1) ( 2m - 1 )x² - 2mx + 1 = 0 
Ta có : 
b² - 4ac 
= (-2m)² - 4(2m - 1) 
= 4m² - 8m + 4 
= ( 2m - 2 )² 
Như vậy : (2m - 2)² ≥ 0 , ∀m ∈ IR 

Gọi x1 , x2 là 2 nghiệm của phương trình 
Áp dụng hệ thức Vi-ét 
{ x1 + x2 = 2m / (2m - 1) 
{ x1x2 = 1 / (2m - 1) 

Nếu nằm trong khoảng thì : 
-1 < x1 < x2 < 0 
Xét đoạn -1 < x1 < x2 
<=> 0 < x1 + 1 < x2 + 1 

Ta lập hệ pt sau 
{ (x1 + 1 )(x2 + 1) > 0 
{ x1 + 1 + x2 + 1 > 0 

{ x1 + x1x2 + x2 + 1 > 0 
{ x1 + x2 + 2 > 0 
Sử dụng Vi-ét 
=> 1/(2m - 1) + 2m/(2m - 1) + 1 > 0 
=> 2m / (2m - 1) + 2 > 0 

<=> ( 1 + 2m + 2m - 1 ) / (2m - 1) > 0 
<=> [2m + 2(2m - 1)] / (2m - 1) > 0 

<=> 4m / ( 2m - 1 ) > 0 
<=> ( 2m + 4m - 2 ) / ( 2m - 1 ) > 0 

<=> 4m / (2m - 1) > 0 
<=> ( 6m - 2 ) / ( 2m - 1 ) > 0 

Vẽ bảng xét dấu 
<=> m < 0 V m > 1/2 (1) 
<=> m < 1/2 V m > 3 (2) 

Xét đoạn x1 < x2 < 0 
{ x1 + x2 < 0 
{ x1x2 > 0 

{ 2m / (2m - 1) < 0 
{ 1 / (2m - 1) > 0 
Xét bảng xét dấu 
<=> 0 < m < 1/2 (3) 
<=> m > 1/2 (4) 

=> m không thuộc khoảng nào cả 
=> Vô nghiệm 

2) x² + 2(m + 3)x + 4m + 12 = 0 
Ta có 
b² - 4ac 
= [ 2(m + 3) ]² - 4(4m + 12) 
= 4(m + 3)² - 16m - 48 
= 4(m² + 6m + 9) - 16m - 48 
= 4m² + 24m + 36 - 16m - 48 
= 4m² + 8m - 12 
Để pt có nghiệm m < -1 V m > 3 

Gọi x1 , x2 là 2 nghiệm của pt 
Áp dụng hệ thức Vi-ét 
{ x1 + x2 = -2(m + 3) 
{ x1x2 = 4m + 12 

Ta đã có -1 < x1 < x2 
<=> 0 < x1 + 1 < x2 + 1 

Ta lập hệ bất pt sau : 
{ ( x1 + 1 )(x2 + 1 ) > 0 
{ x1 + 1 + x2 + 1 > 0 

{ x1 + x1x2 + x2 + 1 > 0 
{ x1 + x2 + 2 > 0 

{ -2(m + 3) + 4m + 12 + 1 > 0 
{ 4m + 12 + 2 > 0 

{ -2m - 6 + 4m + 12 + 1 > 0 
{ 4m + 14 > 0 

{ 2m > -7 
{ 4m > -14 

{ m > -7/2 
{ m > -7/2 
Hợp nghiệm lại 
m ∈ ( -7/2 ; -1 ) ∪ ( -3 ; +∞ ) 

3) 2x² + (2m - 1)x + m - 1 = 0 
Ta có 
b² - 4ac = (2m - 1)² - 4.2.(m - 1) 
= 4m² - 4m + 1 - 8m + 8 
= 4m² - 12m + 9 
= ( 2m - 3 )² 
Mà ( 2m - 3 )² ≥ 0 , ∀m ∈ IR 

Gọi x1 và x2 là 2 nghiệm của pt 

x1 = [-(2m - 1) - 2m +3 ]/ 2 = ( -4m + 2 ) /2 = -2m + 1 
x2 = [-(2m - 1) +2m - 3 ]/ 2 = -2/2 = -1 

Thế 
3x1 - 4x2 = 11 
3( -2m + 1 ) - 4.(-1) = 11 
<=> -6m + 3 + 4 = 11 
<=> -2m = 4 
<=> m = -2 

4) x² - 2(m - 3)x - 2(m - 1) = 0 
Ta có 
[ 2(m - 3)]² - 4.(-2)(m - 1) 
= 4(m - 3)² + 8(m - 1) 
= 4(m² - 6m + 9) + 8m - 8 
= 4m² - 24m + 36 + 8m - 8 
= 4m² - 16m + 28 
Xét tiếp 
(-16)² - 4.4.28 = -192 < 0 mà 4m² là số dương nên 4m² - 16m + 28 > 0 , ∀m ∈ IR 

Áp dụng hệ thức Vi-ét 
{ x1 + x2 = 2(m - 3) 
{ x1x2 = -2(m - 1) 

<=> ( x1 + x2 )² = 4(m - 3)² 
<=> x1² + 2x1x2 + x2² = 4(m² - 6m + 9) 
<=> x1² + x2² - (m - 1) = 4m² - 24m + 36 
<=> x1² + x2² = 4m² - 24m + 36 + m - 1 
<=> x1² + x2² = 4m² - 23m + 35 
Để x1² + x2² Min thì 4m² - 23m + 35 phải Min 
<=> 4m² - 23/4.2.2m + 529/16 + 31/16 
<=> ( 2m - 23/4 )² + 31/16 
Mà ( 2m - 23/4 )² ≥ 0 , ∀m ∈ IR 
<=> ( 2m - 23/4 )² + 31/16 ≥ 31/16 > 0 
Vậy đạt Min khi đó "=" xảy ra : 2m - 23/4 = 0 
<=> m = 23/8 

Vậy m = 23/8 thì x1² + x2² đạt Min 
=> Amin = x1² + x2² = 4(23/8)² - 23(23/8) + 35 = 31/161) ( 2m - 1 )x² - 2mx + 1 = 0 
Ta có : 
b² - 4ac 
= (-2m)² - 4(2m - 1) 
= 4m² - 8m + 4 
= ( 2m - 2 )² 
Như vậy : (2m - 2)² ≥ 0 , ∀m ∈ IR 

Gọi x1 , x2 là 2 nghiệm của phương trình 
Áp dụng hệ thức Vi-ét 
{ x1 + x2 = 2m / (2m - 1) 
{ x1x2 = 1 / (2m - 1) 

Nếu nằm trong khoảng thì : 
-1 < x1 < x2 < 0 
Xét đoạn -1 < x1 < x2 
<=> 0 < x1 + 1 < x2 + 1 

Ta lập hệ pt sau 
{ (x1 + 1 )(x2 + 1) > 0 
{ x1 + 1 + x2 + 1 > 0 

{ x1 + x1x2 + x2 + 1 > 0 
{ x1 + x2 + 2 > 0 
Sử dụng Vi-ét 
=> 1/(2m - 1) + 2m/(2m - 1) + 1 > 0 
=> 2m / (2m - 1) + 2 > 0 

<=> ( 1 + 2m + 2m - 1 ) / (2m - 1) > 0 
<=> [2m + 2(2m - 1)] / (2m - 1) > 0 

<=> 4m / ( 2m - 1 ) > 0 
<=> ( 2m + 4m - 2 ) / ( 2m - 1 ) > 0 

<=> 4m / (2m - 1) > 0 
<=> ( 6m - 2 ) / ( 2m - 1 ) > 0 

Vẽ bảng xét dấu 
<=> m < 0 V m > 1/2 (1) 
<=> m < 1/2 V m > 3 (2) 

Xét đoạn x1 < x2 < 0 
{ x1 + x2 < 0 
{ x1x2 > 0 

{ 2m / (2m - 1) < 0 
{ 1 / (2m - 1) > 0 
Xét bảng xét dấu 
<=> 0 < m < 1/2 (3) 
<=> m > 1/2 (4) 

=> m không thuộc khoảng nào cả 
=> Vô nghiệm 

2) x² + 2(m + 3)x + 4m + 12 = 0 
Ta có 
b² - 4ac 
= [ 2(m + 3) ]² - 4(4m + 12) 
= 4(m + 3)² - 16m - 48 
= 4(m² + 6m + 9) - 16m - 48 
= 4m² + 24m + 36 - 16m - 48 
= 4m² + 8m - 12 
Để pt có nghiệm m < -1 V m > 3 

Gọi x1 , x2 là 2 nghiệm của pt 
Áp dụng hệ thức Vi-ét 
{ x1 + x2 = -2(m + 3) 
{ x1x2 = 4m + 12 

Ta đã có -1 < x1 < x2 
<=> 0 < x1 + 1 < x2 + 1 

Ta lập hệ bất pt sau : 
{ ( x1 + 1 )(x2 + 1 ) > 0 
{ x1 + 1 + x2 + 1 > 0 

{ x1 + x1x2 + x2 + 1 > 0 
{ x1 + x2 + 2 > 0 

{ -2(m + 3) + 4m + 12 + 1 > 0 
{ 4m + 12 + 2 > 0 

{ -2m - 6 + 4m + 12 + 1 > 0 
{ 4m + 14 > 0 

{ 2m > -7 
{ 4m > -14 

{ m > -7/2 
{ m > -7/2 
Hợp nghiệm lại 
m ∈ ( -7/2 ; -1 ) ∪ ( -3 ; +∞ ) 

3) 2x² + (2m - 1)x + m - 1 = 0 
Ta có 
b² - 4ac = (2m - 1)² - 4.2.(m - 1) 
= 4m² - 4m + 1 - 8m + 8 
= 4m² - 12m + 9 
= ( 2m - 3 )² 
Mà ( 2m - 3 )² ≥ 0 , ∀m ∈ IR 

Gọi x1 và x2 là 2 nghiệm của pt 

x1 = [-(2m - 1) - 2m +3 ]/ 2 = ( -4m + 2 ) /2 = -2m + 1 
x2 = [-(2m - 1) +2m - 3 ]/ 2 = -2/2 = -1 

Thế 
3x1 - 4x2 = 11 
3( -2m + 1 ) - 4.(-1) = 11 
<=> -6m + 3 + 4 = 11 
<=> -2m = 4 
<=> m = -2 

4) x² - 2(m - 3)x - 2(m - 1) = 0 
Ta có 
[ 2(m - 3)]² - 4.(-2)(m - 1) 
= 4(m - 3)² + 8(m - 1) 
= 4(m² - 6m + 9) + 8m - 8 
= 4m² - 24m + 36 + 8m - 8 
= 4m² - 16m + 28 
Xét tiếp 
(-16)² - 4.4.28 = -192 < 0 mà 4m² là số dương nên 4m² - 16m + 28 > 0 , ∀m ∈ IR 

Áp dụng hệ thức Vi-ét 
{ x1 + x2 = 2(m - 3) 
{ x1x2 = -2(m - 1) 

<=> ( x1 + x2 )² = 4(m - 3)² 
<=> x1² + 2x1x2 + x2² = 4(m² - 6m + 9) 
<=> x1² + x2² - (m - 1) = 4m² - 24m + 36 
<=> x1² + x2² = 4m² - 24m + 36 + m - 1 
<=> x1² + x2² = 4m² - 23m + 35 
Để x1² + x2² Min thì 4m² - 23m + 35 phải Min 
<=> 4m² - 23/4.2.2m + 529/16 + 31/16 
<=> ( 2m - 23/4 )² + 31/16 
Mà ( 2m - 23/4 )² ≥ 0 , ∀m ∈ IR 
<=> ( 2m - 23/4 )² + 31/16 ≥ 31/16 > 0 
Vậy đạt Min khi đó "=" xảy ra : 2m - 23/4 = 0 
<=> m = 23/8 

Vậy m = 23/8 thì x1² + x2² đạt Min 
=> Amin = x1² + x2² = 4(23/8)² - 23(23/8) + 35 = 31/161) ( 2m - 1 )x² - 2mx + 1 = 0 
Ta có : 
b² - 4ac 
= (-2m)² - 4(2m - 1) 
= 4m² - 8m + 4 
= ( 2m - 2 )² 
Như vậy : (2m - 2)² ≥ 0 , ∀m ∈ IR 

Gọi x1 , x2 là 2 nghiệm của phương trình 
Áp dụng hệ thức Vi-ét 
{ x1 + x2 = 2m / (2m - 1) 
{ x1x2 = 1 / (2m - 1) 

Nếu nằm trong khoảng thì : 
-1 < x1 < x2 < 0 
Xét đoạn -1 < x1 < x2 
<=> 0 < x1 + 1 < x2 + 1 

Ta lập hệ pt sau 
{ (x1 + 1 )(x2 + 1) > 0 
{ x1 + 1 + x2 + 1 > 0 

{ x1 + x1x2 + x2 + 1 > 0 
{ x1 + x2 + 2 > 0 
Sử dụng Vi-ét 
=> 1/(2m - 1) + 2m/(2m - 1) + 1 > 0 
=> 2m / (2m - 1) + 2 > 0 

<=> ( 1 + 2m + 2m - 1 ) / (2m - 1) > 0 
<=> [2m + 2(2m - 1)] / (2m - 1) > 0 

<=> 4m / ( 2m - 1 ) > 0 
<=> ( 2m + 4m - 2 ) / ( 2m - 1 ) > 0 

<=> 4m / (2m - 1) > 0 
<=> ( 6m - 2 ) / ( 2m - 1 ) > 0 

Vẽ bảng xét dấu 
<=> m < 0 V m > 1/2 (1) 
<=> m < 1/2 V m > 3 (2) 

Xét đoạn x1 < x2 < 0 
{ x1 + x2 < 0 
{ x1x2 > 0 

{ 2m / (2m - 1) < 0 
{ 1 / (2m - 1) > 0 
Xét bảng xét dấu 
<=> 0 < m < 1/2 (3) 
<=> m > 1/2 (4) 

=> m không thuộc khoảng nào cả 
=> Vô nghiệm 

2) x² + 2(m + 3)x + 4m + 12 = 0 
Ta có 
b² - 4ac 
= [ 2(m + 3) ]² - 4(4m + 12) 
= 4(m + 3)² - 16m - 48 
= 4(m² + 6m + 9) - 16m - 48 
= 4m² + 24m + 36 - 16m - 48 
= 4m² + 8m - 12 
Để pt có nghiệm m < -1 V m > 3 

Gọi x1 , x2 là 2 nghiệm của pt 
Áp dụng hệ thức Vi-ét 
{ x1 + x2 = -2(m + 3) 
{ x1x2 = 4m + 12 

Ta đã có -1 < x1 < x2 
<=> 0 < x1 + 1 < x2 + 1 

Ta lập hệ bất pt sau : 
{ ( x1 + 1 )(x2 + 1 ) > 0 
{ x1 + 1 + x2 + 1 > 0 

{ x1 + x1x2 + x2 + 1 > 0 
{ x1 + x2 + 2 > 0 

{ -2(m + 3) + 4m + 12 + 1 > 0 
{ 4m + 12 + 2 > 0 

{ -2m - 6 + 4m + 12 + 1 > 0 
{ 4m + 14 > 0 

{ 2m > -7 
{ 4m > -14 

{ m > -7/2 
{ m > -7/2 
Hợp nghiệm lại 
m ∈ ( -7/2 ; -1 ) ∪ ( -3 ; +∞ ) 

3) 2x² + (2m - 1)x + m - 1 = 0 
Ta có 
b² - 4ac = (2m - 1)² - 4.2.(m - 1) 
= 4m² - 4m + 1 - 8m + 8 
= 4m² - 12m + 9 
= ( 2m - 3 )² 
Mà ( 2m - 3 )² ≥ 0 , ∀m ∈ IR 

Gọi x1 và x2 là 2 nghiệm của pt 

x1 = [-(2m - 1) - 2m +3 ]/ 2 = ( -4m + 2 ) /2 = -2m + 1 
x2 = [-(2m - 1) +2m - 3 ]/ 2 = -2/2 = -1 

Thế 
3x1 - 4x2 = 11 
3( -2m + 1 ) - 4.(-1) = 11 
<=> -6m + 3 + 4 = 11 
<=> -2m = 4 
<=> m = -2 

4) x² - 2(m - 3)x - 2(m - 1) = 0 
Ta có 
[ 2(m - 3)]² - 4.(-2)(m - 1) 
= 4(m - 3)² + 8(m - 1) 
= 4(m² - 6m + 9) + 8m - 8 
= 4m² - 24m + 36 + 8m - 8 
= 4m² - 16m + 28 
Xét tiếp 
(-16)² - 4.4.28 = -192 < 0 mà 4m² là số dương nên 4m² - 16m + 28 > 0 , ∀m ∈ IR 

Áp dụng hệ thức Vi-ét 
{ x1 + x2 = 2(m - 3) 
{ x1x2 = -2(m - 1) 

<=> ( x1 + x2 )² = 4(m - 3)² 
<=> x1² + 2x1x2 + x2² = 4(m² - 6m + 9) 
<=> x1² + x2² - (m - 1) = 4m² - 24m + 36 
<=> x1² + x2² = 4m² - 24m + 36 + m - 1 
<=> x1² + x2² = 4m² - 23m + 35 
Để x1² + x2² Min thì 4m² - 23m + 35 phải Min 
<=> 4m² - 23/4.2.2m + 529/16 + 31/16 
<=> ( 2m - 23/4 )² + 31/16 
Mà ( 2m - 23/4 )² ≥ 0 , ∀m ∈ IR 
<=> ( 2m - 23/4 )² + 31/16 ≥ 31/16 > 0 
Vậy đạt Min khi đó "=" xảy ra : 2m - 23/4 = 0 
<=> m = 23/8 

Vậy m = 23/8 thì x1² + x2² đạt Min 
=> Amin = x1² + x2² = 4(23/8)² - 23(23/8) + 35 = 31/161) ( 2m - 1 )x² - 2mx + 1 = 0 
Ta có : 
b² - 4ac 
= (-2m)² - 4(2m - 1) 
= 4m² - 8m + 4 
= ( 2m - 2 )² 
Như vậy : (2m - 2)² ≥ 0 , ∀m ∈ IR 

Gọi x1 , x2 là 2 nghiệm của phương trình 
Áp dụng hệ thức Vi-ét 
{ x1 + x2 = 2m / (2m - 1) 
{ x1x2 = 1 / (2m - 1) 

Nếu nằm trong khoảng thì : 
-1 < x1 < x2 < 0 
Xét đoạn -1 < x1 < x2 
<=> 0 < x1 + 1 < x2 + 1 

Ta lập hệ pt sau 
{ (x1 + 1 )(x2 + 1) > 0 
{ x1 + 1 + x2 + 1 > 0 

{ x1 + x1x2 + x2 + 1 > 0 
{ x1 + x2 + 2 > 0 
Sử dụng Vi-ét 
=> 1/(2m - 1) + 2m/(2m - 1) + 1 > 0 
=> 2m / (2m - 1) + 2 > 0 

<=> ( 1 + 2m + 2m - 1 ) / (2m - 1) > 0 
<=> [2m + 2(2m - 1)] / (2m - 1) > 0 

<=> 4m / ( 2m - 1 ) > 0 
<=> ( 2m + 4m - 2 ) / ( 2m - 1 ) > 0 

<=> 4m / (2m - 1) > 0 
<=> ( 6m - 2 ) / ( 2m - 1 ) > 0 

Vẽ bảng xét dấu 
<=> m < 0 V m > 1/2 (1) 
<=> m < 1/2 V m > 3 (2) 

Xét đoạn x1 < x2 < 0 
{ x1 + x2 < 0 
{ x1x2 > 0 

{ 2m / (2m - 1) < 0 
{ 1 / (2m - 1) > 0 
Xét bảng xét dấu 
<=> 0 < m < 1/2 (3) 
<=> m > 1/2 (4) 

=> m không thuộc khoảng nào cả 
=> Vô nghiệm 

2) x² + 2(m + 3)x + 4m + 12 = 0 
Ta có 
b² - 4ac 
= [ 2(m + 3) ]² - 4(4m + 12) 
= 4(m + 3)² - 16m - 48 
= 4(m² + 6m + 9) - 16m - 48 
= 4m² + 24m + 36 - 16m - 48 
= 4m² + 8m - 12 
Để pt có nghiệm m < -1 V m > 3 

Gọi x1 , x2 là 2 nghiệm của pt 
Áp dụng hệ thức Vi-ét 
{ x1 + x2 = -2(m + 3) 
{ x1x2 = 4m + 12 

Ta đã có -1 < x1 < x2 
<=> 0 < x1 + 1 < x2 + 1 

Ta lập hệ bất pt sau : 
{ ( x1 + 1 )(x2 + 1 ) > 0 
{ x1 + 1 + x2 + 1 > 0 

{ x1 + x1x2 + x2 + 1 > 0 
{ x1 + x2 + 2 > 0 

{ -2(m + 3) + 4m + 12 + 1 > 0 
{ 4m + 12 + 2 > 0 

{ -2m - 6 + 4m + 12 + 1 > 0 
{ 4m + 14 > 0 

{ 2m > -7 
{ 4m > -14 

{ m > -7/2 
{ m > -7/2 
Hợp nghiệm lại 
m ∈ ( -7/2 ; -1 ) ∪ ( -3 ; +∞ ) 

3) 2x² + (2m - 1)x + m - 1 = 0 
Ta có 
b² - 4ac = (2m - 1)² - 4.2.(m - 1) 
= 4m² - 4m + 1 - 8m + 8 
= 4m² - 12m + 9 
= ( 2m - 3 )² 
Mà ( 2m - 3 )² ≥ 0 , ∀m ∈ IR 

Gọi x1 và x2 là 2 nghiệm của pt 

x1 = [-(2m - 1) - 2m +3 ]/ 2 = ( -4m + 2 ) /2 = -2m + 1 
x2 = [-(2m - 1) +2m - 3 ]/ 2 = -2/2 = -1 

Thế 
3x1 - 4x2 = 11 
3( -2m + 1 ) - 4.(-1) = 11 
<=> -6m + 3 + 4 = 11 
<=> -2m = 4 
<=> m = -2 

4) x² - 2(m - 3)x - 2(m - 1) = 0 
Ta có 
[ 2(m - 3)]² - 4.(-2)(m - 1) 
= 4(m - 3)² + 8(m - 1) 
= 4(m² - 6m + 9) + 8m - 8 
= 4m² - 24m + 36 + 8m - 8 
= 4m² - 16m + 28 
Xét tiếp 
(-16)² - 4.4.28 = -192 < 0 mà 4m² là số dương nên 4m² - 16m + 28 > 0 , ∀m ∈ IR 

Áp dụng hệ thức Vi-ét 
{ x1 + x2 = 2(m - 3) 
{ x1x2 = -2(m - 1) 

<=> ( x1 + x2 )² = 4(m - 3)² 
<=> x1² + 2x1x2 + x2² = 4(m² - 6m + 9) 
<=> x1² + x2² - (m - 1) = 4m² - 24m + 36 
<=> x1² + x2² = 4m² - 24m + 36 + m - 1 
<=> x1² + x2² = 4m² - 23m + 35 
Để x1² + x2² Min thì 4m² - 23m + 35 phải Min 
<=> 4m² - 23/4.2.2m + 529/16 + 31/16 
<=> ( 2m - 23/4 )² + 31/16 
Mà ( 2m - 23/4 )² ≥ 0 , ∀m ∈ IR 
<=> ( 2m - 23/4 )² + 31/16 ≥ 31/16 > 0 
Vậy đạt Min khi đó "=" xảy ra : 2m - 23/4 = 0 
<=> m = 23/8 

Vậy m = 23/8 thì x1² + x2² đạt Min 
=> Amin = x1² + x2² = 4(23/8)² - 23(23/8) + 35 = 31/161) ( 2m - 1 )x² - 2mx + 1 = 0 
Ta có : 
b² - 4ac 
= (-2m)² - 4(2m - 1) 
= 4m² - 8m + 4 
= ( 2m - 2 )² 
Như vậy : (2m - 2)² ≥ 0 , ∀m ∈ IR 

Gọi x1 , x2 là 2 nghiệm của phương trình 
Áp dụng hệ thức Vi-ét 
{ x1 + x2 = 2m / (2m - 1) 
{ x1x2 = 1 / (2m - 1) 

Nếu nằm trong khoảng thì : 
-1 < x1 < x2 < 0 
Xét đoạn -1 < x1 < x2 
<=> 0 < x1 + 1 < x2 + 1 

Ta lập hệ pt sau 
{ (x1 + 1 )(x2 + 1) > 0 
{ x1 + 1 + x2 + 1 > 0 

{ x1 + x1x2 + x2 + 1 > 0 
{ x1 + x2 + 2 > 0 
Sử dụng Vi-ét 
=> 1/(2m - 1) + 2m/(2m - 1) + 1 > 0 
=> 2m / (2m - 1) + 2 > 0 

<=> ( 1 + 2m + 2m - 1 ) / (2m - 1) > 0 
<=> [2m + 2(2m - 1)] / (2m - 1) > 0 

<=> 4m / ( 2m - 1 ) > 0 
<=> ( 2m + 4m - 2 ) / ( 2m - 1 ) > 0 

<=> 4m / (2m - 1) > 0 
<=> ( 6m - 2 ) / ( 2m - 1 ) > 0 

Vẽ bảng xét dấu 
<=> m < 0 V m > 1/2 (1) 
<=> m < 1/2 V m > 3 (2) 

Xét đoạn x1 < x2 < 0 
{ x1 + x2 < 0 
{ x1x2 > 0 

{ 2m / (2m - 1) < 0 
{ 1 / (2m - 1) > 0 
Xét bảng xét dấu 
<=> 0 < m < 1/2 (3) 
<=> m > 1/2 (4) 

=> m không thuộc khoảng nào cả 
=> Vô nghiệm 

2) x² + 2(m + 3)x + 4m + 12 = 0 
Ta có 
b² - 4ac 
= [ 2(m + 3) ]² - 4(4m + 12) 
= 4(m + 3)² - 16m - 48 
= 4(m² + 6m + 9) - 16m - 48 
= 4m² + 24m + 36 - 16m - 48 
= 4m² + 8m - 12 
Để pt có nghiệm m < -1 V m > 3 

Gọi x1 , x2 là 2 nghiệm của pt 
Áp dụng hệ thức Vi-ét 
{ x1 + x2 = -2(m + 3) 
{ x1x2 = 4m + 12 

Ta đã có -1 < x1 < x2 
<=> 0 < x1 + 1 < x2 + 1 

Ta lập hệ bất pt sau : 
{ ( x1 + 1 )(x2 + 1 ) > 0 
{ x1 + 1 + x2 + 1 > 0 

{ x1 + x1x2 + x2 + 1 > 0 
{ x1 + x2 + 2 > 0 

{ -2(m + 3) + 4m + 12 + 1 > 0 
{ 4m + 12 + 2 > 0 

{ -2m - 6 + 4m + 12 + 1 > 0 
{ 4m + 14 > 0 

{ 2m > -7 
{ 4m > -14 

{ m > -7/2 
{ m > -7/2 
Hợp nghiệm lại 
m ∈ ( -7/2 ; -1 ) ∪ ( -3 ; +∞ ) 

3) 2x² + (2m - 1)x + m - 1 = 0 
Ta có 
b² - 4ac = (2m - 1)² - 4.2.(m - 1) 
= 4m² - 4m + 1 - 8m + 8 
= 4m² - 12m + 9 
= ( 2m - 3 )² 
Mà ( 2m - 3 )² ≥ 0 , ∀m ∈ IR 

Gọi x1 và x2 là 2 nghiệm của pt 

x1 = [-(2m - 1) - 2m +3 ]/ 2 = ( -4m + 2 ) /2 = -2m + 1 
x2 = [-(2m - 1) +2m - 3 ]/ 2 = -2/2 = -1 

Thế 
3x1 - 4x2 = 11 
3( -2m + 1 ) - 4.(-1) = 11 
<=> -6m + 3 + 4 = 11 
<=> -2m = 4 
<=> m = -2 

4) x² - 2(m - 3)x - 2(m - 1) = 0 
Ta có 
[ 2(m - 3)]² - 4.(-2)(m - 1) 
= 4(m - 3)² + 8(m - 1) 
= 4(m² - 6m + 9) + 8m - 8 
= 4m² - 24m + 36 + 8m - 8 
= 4m² - 16m + 28 
Xét tiếp 
(-16)² - 4.4.28 = -192 < 0 mà 4m² là số dương nên 4m² - 16m + 28 > 0 , ∀m ∈ IR 

Áp dụng hệ thức Vi-ét 
{ x1 + x2 = 2(m - 3) 
{ x1x2 = -2(m - 1) 

<=> ( x1 + x2 )² = 4(m - 3)² 
<=> x1² + 2x1x2 + x2² = 4(m² - 6m + 9) 
<=> x1² + x2² - (m - 1) = 4m² - 24m + 36 
<=> x1² + x2² = 4m² - 24m + 36 + m - 1 
<=> x1² + x2² = 4m² - 23m + 35 
Để x1² + x2² Min thì 4m² - 23m + 35 phải Min 
<=> 4m² - 23/4.2.2m + 529/16 + 31/16 
<=> ( 2m - 23/4 )² + 31/16 
Mà ( 2m - 23/4 )² ≥ 0 , ∀m ∈ IR 
<=> ( 2m - 23/4 )² + 31/16 ≥ 31/16 > 0 
Vậy đạt Min khi đó "=" xảy ra : 2m - 23/4 = 0 
<=> m = 23/8 

Vậy m = 23/8 thì x1² + x2² đạt Min 
=> Amin = x1² + x2² = 4(23/8)² - 23(23/8) + 35 = 31/16 

1 tháng 5 2016

bn dùng bao nhiêu thời gian để viết chỗ đó thế

1 tháng 5 2019

Chọn A

a: \(f\left(-2\right)=2\cdot\left(-2\right)^3+\left(-2\right)^2-4\cdot\left(-2\right)-2=-6\)

\(f\left(-1\right)=2\cdot\left(-1\right)^3+\left(-1\right)^2-4\cdot\left(-1\right)-2=-2+1+4-2=1\)

\(f\left(-\dfrac{1}{2}\right)=2\cdot\dfrac{-1}{8}+\dfrac{1}{4}-4\cdot\dfrac{-1}{2}-2=\dfrac{-1}{4}+\dfrac{1}{4}+2-2=0\)

\(f\left(1\right)=2+1-4-2=-3\)

\(f\left(2\right)=2\cdot2^3+2^2-4\cdot2-2=16+4-8-2=10\)

b: Vì f(-1/2)=0 nên -1/2 là một nghiệm của đa thức f(x)

29 tháng 7 2016

cho 2014=2013+1 thay vào ta có:\(B=x^{2013}-\left(2013+1\right)x^{2012}+\left(2013+1\right)x^{2011}-...-\left(2013+1\right)x^2+\left(2013+1\right)x-1\)

\(=x^{2013}-\left(x+1\right)x^{2012}+\left(x+1\right)x^{2011}-...-\left(x+1\right)x^2+\left(x+1\right)x-1\)

\(=x^{2013}-x^{2013}-x^{2012}+x^{2012}+x^{2011}-...-x^3-x^2+x^2+x-1\)

\(=x-1=2013-1=2012\)

29 tháng 3 2016

nhiều quáhuhu

a: =>x+3>0

hay x>-3

b: \(\Leftrightarrow-\left(x-2\right)^2\left(x+2\right)>0\)

=>x+2<0

hay x<-2

c: =>x+4>0

hay x>-4

d: =>-3<x<4

29 tháng 4 2016

Câu 1. 

A =  {15;16;17;18;19}  (0,25đ)

Câu 2. 

a.  2.(72 – 2.32) – 60

            = 2.(49 – 2.9) – 60              (0,25đ)

= 2.31 – 60              (0,25đ)

            = 62 – 60  = 2           (0,25đ)

b.   27.63 + 27.37

            = 27.(63 + 37)                  (0,25đ)

= 27.100          (0,25đ)

            = 2700          (0,25đ)

c. l-7l + (-8) + l-11l + 2

            = 7 + (-8) + 11 + 2        (0,5 đ)  

            = 12     (0,25đ)

d. 568 – 34 {5.l9 – ( 4-1)2l + 10}

        = 568 – 34 {5.[9-9] + 10}      (0,25đ)

=  568 – 34.10

= 568 – 340           (0,25đ)

      = 228               (0,25đ)

Câu 3. 

a)2x + 3 = 52 : 5

      2x + 3 =5              (0,25đ)

2x  = 5-3            (0,25đ)

2x   =2            (0,25đ)

x=1            (0,25đ)

b)

105 – ( x + 7) = 27 : 25

105 – ( x + 7) = 22             (0,25đ)

105 – ( x + 7) = 4            (0,25đ)

x + 7 = 105 – 4                (0,25đ)

x + 7 = 101                      (0,25đ)

x   =  101 – 7            (0,25đ)

x  = 94             (0,25đ)

Câu 4.

Gọi x (hs) là số học sinh lớp 6B phải tìm (30<x< 38, x)

Vì hs lớp 6B xếp 2,  hàng, 4 hàng, 8 hàng đều vừa đủ nên x⋮2; x⋮4; x8 hay x  ∈ BC{2;4;8}            (0,25đ)

Ta có: BCNN(2,4,8) = 8               (0,25đ)

⇒ BC(2,4,8) = B(8) ={0; 8; 16;24; 32; 40; …}

Mặt khác: 30<x< 38            (0,25đ)

Nên  x = 32

Vậy số học sinh lớp 6B là 32 học sinh    (0,25đ)

Câu 5. 

Khi M nằm giữa và cách đều hai điểm A và B     (0,5đ)

Vẽ được hình có điểm M là trung điểm của AB    (0,5đ)

Câu 6.a)

2015-12-24_155146

0,25đ

Điểm A nằm giữa O và B      (0,25đ)

Vì OA < OB  ( 4 < 8 )       (0,25đ)

Ta có: AO + AB = OB

3 + AB = 6        (0,25đ)

AB = 6 -3 = 3 cm          (0,25đ)

Vậy OA = AB = 3 cm         (0,25đ)

b)

Vì  A nằm giữa O, B và cách đều O và B ( OA = AB )          (0,25đ)

Nên A là trung điểm OB           (0,25đ)

29 tháng 4 2016

Chép trên mạng thôi  limdim

27 tháng 12 2018

10 tháng 4 2016

Cho tam giác ABC đều
D thuộc AB , E thuộc AC sao cho BD = AE
CM : Khi D,E thay đổi ( di chuyển ) trên AB,AC thì đường trung tuyến DE luôn đi qua điểm cố định
Help me !!!

a)A=x+3/x-2

A=x-2+5/x-2

A=1+5/x-2

vì 1 thuộc Z nên để A thuộc Z thì 5 phải chia hết cho x-2

x-2 thuộc ước của 5

x-2 thuộc -5;-1;1;5

x = -3;1;3 hoặc 7

giá trị các biểu thức theo giá trị của x như trên và lần lượt là 0;-4;6;2

b)để B= 1-2x/2+x thuộc Z thì

1-2x phải chia hết cho 2+x

nên 1-2x-4+4  phải chia hết cho x+2

1-(2x+4)+4  phải chia hết cho x+2

1+4-[2(x+2]  phải chia hết cho x+2

5 -[2(x+2] phải chia hết cho x+2

vì [2(x+2] chia hết cho x+2 nên 5 phải chia hết cho x+2

suy ra x+2 thuộc ước của 5 

  x+2 thuộc -5;-1;1;5

x=-7;-3;-1;3

giá trị các biểu thức theo giá trị của x như trên và lần lượt là -3;-7;3;-1

19 tháng 4 2017

bạn làm sai 1 chút ở đầu

20 tháng 8 2017