Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(\left\{\begin{matrix} ax+by=c\\ bx+cy=a\\ cx+ay=b\end{matrix}\right.\Rightarrow ax+by+bx+cy+cx+ay=c+a+b\)
\(\Rightarrow x(a+b+c)+y(a+b+c)=a+b+c\)
\(\Rightarrow (x+y-1)(a+b+c)=0\)
Vì $x,y$ luôn thỏa mãn nên \(a+b+c=0\)
\(\Rightarrow a+b=-c\)
Khi đó:
\(a^3+b^3+c^3=a^3+3ab(a+b)+b^3-3ab(a+b)+c^3\)
\(=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=3abc\)
Ta có đpcm.
x,y luôn thỏa mãn thì tại sao lại suy ra a+b+c=0 .Mong thầy giải thích giúp em.
#)Giải :
Ta có : \(\hept{\begin{cases}ax+by=c\\bx+cy=a\\cx+ay=b\end{cases}\Rightarrow ax+by+bx+cy+cx+ay=c+a+b}\)
\(\Rightarrow x\left(a+b+c\right)+y\left(a+c+b\right)=a+b+c\)
\(\Rightarrow\left(x+y-1\right)\left(a+b+c\right)=0\)
\(\Rightarrow a+b+c=0\Rightarrow a+b=-c\)
\(\Rightarrow a^3+b^3+c^3=a^3+3ab\left(a+b\right)+b^3-3ab\left(a+b\right)+c^3\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3\)
\(=\left(-c\right)^3-3ab\left(-c\right)+c^3=3abc\)
\(\Rightarrowđpcm\)
\(1.\)
Theo đề ra, ta có:
\(ax+by=c\)
\(bx+cy=a\Leftrightarrow ax+by+bx+cy+cx+ay=c+a+b\)
\(cx+by=b\)
\(\Leftrightarrow x\left(a+b+c\right)+y\left(a+b+c\right)=a+b+c\)
\(\Leftrightarrow\left(x+y-1\right)\left(a+b+c\right)=0\)
Ta có: \(x,y\)thỏa mãn \(\Rightarrow a+b+c=0\Rightarrow a+b=\left(-c\right)\)
Khi đó ta có:
\(a^3+b^3+c^3=a^3+3ab\left(a+b\right)+b^3-3ab\left(a+b\right)+c^3\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3=\left(-c\right)^3-3ab\left(-c\right)+c^3=3abc\)\(\left(đpcm\right)\)
\(a,21bc^2-6c-3c^3+42b\)
\(=21bc^2-3c^3+42b-6c\)
\(=3c^2\left(7b-3c\right)+6\left(7b-3c\right)=3\left(c^2+2\right)\left(7b-3c\right)\)\(c,ax-bx-cx+ay-by-cy\)
\(=x\left(a-b-c\right)+y\left(a-b-c\right)=\left(x+y\right)\left(a-b-c\right)\)Còn phần b hình như sai đề
CÂU 2 ĐỀ SAI THÌ PHẢI, THEO MÌNH THÌ ĐƯỢC CÁI NÀY !!!!!!
Cộng lần lượt từng vế của 3 pt lại:
=> \(\left(a+b+c\right)\left(x+y\right)=a+b+c\)
=> \(a+b+c=0\)
(CHỖ NÀY ĐỀ BÀI CHO THIẾU x+y khác 1 nữa nhé)
=>
\(a^3+b^3+c^3=\left(a+b\right)^3-3ab\left(a+b\right)+c^3=\left(-c\right)^3-3ab.\left(-c\right)+c^3=-c^3+c^3+3abc=3abc\)
TỚ CHỈ CM ĐC \(a^3+b^3+c^3=3abc\) thoy nhaaaaaaa
\(\left\{{}\begin{matrix}ax+by=c\\bx+cy=a\\cx+ay=b\end{matrix}\right.\)
Cộng đại số => \(ax+by+bx+cy+cx+ay=a+b+c\)
<=>\(\left(a+b+c\right)x+\left(a+b+c\right)y=a+b+c\)
<=>\(\left(a+b+c\right)\left(x+y\right)=a+b+c\)
<=>\(\left(a+b+c\right)\left(x+y\right)-\left(a+b+c\right)=0\)
<=>\(\left(a+b+c\right)\left(x+y-1\right)=0\)
+TH1:\(\left(a+b+c\right)=0\)
=>\(a+b=-c\)
=>\(\left(a+b\right)^3=-c^3\)
=>\(a^3+b^3+3a^2b+3ab^2=-c^3\)
=>\(a^3+b^3+3ab\left(a+b\right)=-c^3\)
=>\(a^3+b^3+c^3=-3ab\left(a+b\right)\)
Mà a+b=-c => -3ab(a+b)=-3ab(-c)=3abc
=>\(a^3+b^3+c^3=3abc\)
+TH2:x+y=1
<=>y=1-x
=>\(\left\{{}\begin{matrix}ax+b\left(1-x\right)=c\\bx+c\left(1-x\right)=a\\cx+a\left(1-x\right)=b\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}ax+b-bx=c\\bx+c-cx=a\\cx+a-ax=b\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(a-b\right)x=c-b\\\left(b-c\right)x=a-c\\\left(c-a\right)x=b-a\end{matrix}\right.\)
Nếu \(\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\)
=>a=b=c
\(\Rightarrow a^3+b^3+c^3=3a^3\\ 3abc=3a^3\\ \Rightarrow a^3+b^3+c^3=3abc\)
Nếu \(\left\{{}\begin{matrix}a-b\ne0\\b-c\ne0\\c-a\ne0\end{matrix}\right.\)=>\(\left\{{}\begin{matrix}x=\dfrac{c-b}{a-b}\left(1\right)\\x=\dfrac{a-c}{b-c}\left(2\right)\\x=\dfrac{b-a}{c-a}\end{matrix}\right.\)
Ta có : (1)=(2)=x suy ra \(\dfrac{c-b}{a-b}=\dfrac{a-c}{b-c}\Rightarrow\dfrac{b-c}{b-a}=\dfrac{a-c}{b-c}\Rightarrow\left(b-c\right)\left(b-c\right)=\left(a-c\right)\left(b-a\right)^{ }\Rightarrow b^2-2bc+c^2=a^2+ab-bc+ca\)
\(\Rightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Rightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)=0\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2=0\\ \\ \\ \Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
=>a=b=c(đưa về trường hợp như trên)