Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ví dụ: 10 = 7 (mod 3) vì 10 và 7 có cùng số dư khi chia cho 3. Mà 10 > 3 ; 7 > 3.
Tương tự bài này suy ra a + b + c > 27 và m > 27
Mà đề cho 0 < m < 27 nên không tìm được m thảo mãn đề bài
Vì 0 ≤ a ≤ b + 1 ≤ c + 2 nên ta có a + b+c ≤ (c+2)+ (c+2) + c
<=> 1 ≤ 3c+ 4 <=> -3 ≤ 3c <=> -1≤ c
Dấu bằng xảy ra <=> a+b+c=1 và a = b +1 =c+2 <=> a = 1, b = 0, c = -1
KL: Gía trị nhỏ nhất của c = -1
\(0\le a\le b+1\le c+2\\\)
\(\Rightarrow0\le a+b+1+c+2\le\left(c+2\right)+\left(c+2\right)+\left(c+2\right)=3c+6\)
\(\Rightarrow\left(a+b+c\right)+1+2\le3c+6\)
\(\Rightarrow4\le3c+6\)
\(c\ge\frac{-2}{3}\)
Vậy GTNN của c là \(\frac{-2}{3}\)\(\Leftrightarrow\)a+b=\(\frac{5}{3}\)
Vì 0 ≤ a ≤ b + 1 ≤ c + 2
=> 0 ≤ a + b + 1 + c + 2 ≤ c + 2 + c + 2 + c + 2
=> 0 ≤ 4 ≤ 3c + 6 (vì a + b + c = 1)
=> 3c + 6 ≥ 4
=> 3c ≥ -2 => c ≥ -2/3
Dấu " = " xảy ra <=> a + b + c = 1 <=> a + b + (-2/3) = 1 <=> a + b = 5/3
Vậy GTNN của c là -2/3 khi đó a + b = 5/3
Chắc em nhầm cô ạ!! Làm lại là:
Vì: \(0\le a\le b+1\le c+2\Rightarrow a+b+c\le c+2+c+1+c\)
\(\Leftrightarrow1\le3c+3\left(a+b+c=1\right)\)Hay \(3c\ge-2\Rightarrow c\ge-\frac{2}{3}\)
Vậy \(Min_C=-\frac{2}{3}\) Khi đó: \(a=\frac{4}{3};b=\frac{1}{3}\)
Bài toán đồng dư này khó đấy!
Tớ học đồng dư cũng được.