Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯCLN(4n + 3; 5n + 2) ( d ∈ Z ) Nên ta có :
4n + 3 ⋮ d và 5n + 2 ⋮ d
=> 5(4n + 3) ⋮ d và 4(5n + 2) ⋮ d
=> 20n + 15 ⋮ d và 20n + 8 ⋮ d
=> (20n + 15) - (20n + 8) ⋮ d
=> 7 ⋮ d => d = { ± 1 ; ± 7 }
Vậy ƯC(4n + 3;5n + 2) = { ± 1 ; ± 7 }
Gọi ƯCLN(4n+3,5n+2) = d(d ∈ ℕ )
⇒4n+3 ⋮d; 5n+2 ⋮d
⇒ 5.(4n+3)⋮d; 4.(5n+2)⋮d
⇒20n+15 ⋮d; 20n+8 ⋮d
⇒(20n+15-20n-8)⋮d
⇒7 ⋮d
Do đó d ∈ Ư(7)={1;7}
Mà đầu bài cho là (4n+3,5n+2) ≠ 1
⇒d=7
Vậy ƯCLN(4n+3,5n+2) = 7
Gọi ƯCNL(4n+3 ; 5n + 2) = d
Ta có : 4n + 3 chia hết cho d => 5(4n + 3) chia hết cho d
5n + 2 chia hết cho d => 4(5n + 2) chia hết cho d
=> 5(4n + 3) - 4(5n + 2) chia hết cho d
=> (20n + 15) - (20n + 8) chia hết cho d
=> 7 chia hết cho d => 4n + 3 và 5n + 2 ko nguyên tố cùng nhau
=> d ∈ Ư(7)
=> d = 7
=> ƯCLN(4n+3 ; 5n+2) = 7
Đặt ƯCLN( 4n + 3; 5n + 2) = d
=> 4n + 3 chia hết cho d
=> 5n + 2 chia hết cho d
<=> 20n + 15 - 20n - 8 = 7 chia hết cho d hay d\(\in\)Ư(7) = {1;7)
Vì: 4n + 3 và 5n + 2 là 2 số không nguyên tố cùng nhau nên chọn d = 7
Vậy: ƯCLN(4n + 3; 5n + 2) = 7
Gọi d= ƯCLN(4n+3, 5n+2) với d#1
=>4n+3 chia hết cho d =>20n+15 chia hết cho d => 7 chia hết cho d => d=7
5n+2 chia hết cho d 20n + 8 chia hết cho d
Vậy ...
Gọi ƯCLN(4n+3,5n+1)=d(d\(\inℕ^∗\))
\(\Rightarrow\)4n+3\(⋮\)d
5n+1\(⋮\)d
\(\Rightarrow\)5.(4n+3)\(⋮\)d
4.(5n+1)\(⋮\)d
\(\Rightarrow\)20n+15\(⋮\)d
20n+4\(⋮\)d
\(\Rightarrow\)(20n+15-20n-4)\(⋮\)d
\(\Rightarrow\)11\(⋮\)d
Do đó d \(\in\)Ư(11)={1;11}
Mà đầu bài cho là (4n+3,5n+1)\(\ne\)1
\(\Rightarrow\)d=11
Vậy ƯCLN(4n+3,5n+1)=11