Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(sigma\frac{a}{1+b-a}=sigma\frac{a^2}{a+ab-a^2}\ge\frac{\left(a+b+c\right)^2}{a+b+c+\frac{\left(a+b+c\right)^2}{3}-\frac{\left(a+b+c\right)^2}{3}}=1\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
\(\frac{1}{b^2+c^2}=\frac{1}{1-a^2}=1+\frac{a^2}{b^2+c^2}\le1+\frac{a^2}{2bc}\)
Tương tự cộng lại quy đồng ta có đpcm
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Ta có: \(\frac{1}{a+b}+\frac{1}{b+c}\ge2\sqrt{\frac{1}{a+b}\frac{1}{b+c}}=2\frac{1}{\sqrt{\left(a+b\right)\left(b+c\right)}}\ge\frac{4}{a+2b+c}\)
Tương tự có: \(\frac{1}{b+c}+\frac{1}{a+c}\ge\frac{4}{a+2c+b}\)
\(\frac{1}{a+b}+\frac{1}{a+c}\ge\frac{4}{b+2a+c}\)
\(\Rightarrow\frac{1}{a+b}+\frac{1}{c+b}+\frac{1}{a+c}\ge2\left(\frac{1}{b+2a+c}+\frac{1}{a+2b+c}+\frac{1}{b+2c+a}\right)\)
Ta CM: \(\frac{1}{b+2a+c}\ge\frac{6}{a^2+63}\). Thật vậy:
\(\frac{1}{b+2a+c}\ge\frac{6}{a^2+63}\)\(\Leftrightarrow a^2+63\ge6b+12a+6c\)\(\Leftrightarrow2a^2+b^2+c^2+36-6b-12a-6c\ge0\)
\(\Leftrightarrow2\left(a-3\right)^2+\left(b-3\right)^2+\left(c-3\right)^2\ge0\) ( luôn đúng)
Dấu '=' xảy ra <=> a=b=c=3
Vậy \(\frac{1}{b+2a+c}+\frac{1}{a+2b+c}+\frac{1}{b+2c+a}\ge\frac{6}{a^2+63}+\frac{6}{b^2+63}+\frac{6}{c^2+63}\)
=> đpcm
Từ bất đẳng thức Cô si ta có:
\(4\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\left[\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\right]^2\)
\(\Rightarrow\)Ta cần chứng minh:
\(\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)
Vì vai trò của a, b, c trong bất đẳng thức như nhau, nên không mất tính tổng quát ta giả sử \(a\ge b\ge c\)nên bất đẳng thức cuối cùng đùng. Vậy bất đẳng thức được chứng minh.
Để ý rằng \(a+b+c=1\) hay \(\left(a+b+c\right)^2=1\)nên ta cần biển đổi a,b,c xuất hiện các đại lượng \(\frac{\sqrt{a}}{\sqrt{c+2b}};\frac{\sqrt{b}}{\sqrt{a+2c}};\frac{\sqrt{c}}{\sqrt{b+2a}}\)nên ta biển đổi như sau:
\(a+b+c=\frac{\sqrt{a}}{\sqrt{c+2b}}\sqrt{a\left(c+2b\right)}+\frac{\sqrt{b}}{\sqrt{a+2c}}\sqrt{b\left(a+2c\right)}+\frac{\sqrt{c}}{\sqrt{b+2a}}\sqrt{c\left(b+2a\right)}\)
Khi đó ta được:
\(\left(a+b+c\right)^2=\left[\frac{\sqrt{a}}{\sqrt{c+2b}}\sqrt{a\left(c+2b\right)}+\frac{\sqrt{b}}{\sqrt{a+2c}}\sqrt{b\left(a+2c\right)}+\frac{\sqrt{c}}{\sqrt{b+2a}}\sqrt{c\left(b+2a\right)}\right]^2\)
Theo bất đẳng thức Bunhiacopxiki ta được:
\(\left[\frac{\sqrt{a}}{\sqrt{c+2b}}\sqrt{a\left(c+2b\right)}+\frac{\sqrt{b}}{\sqrt{a+2c}}\sqrt{b\left(a+2c\right)}+\frac{\sqrt{c}}{\sqrt{b+2a}}\sqrt{c\left(b+2a\right)}\right]\)
\(\le\left(\frac{a}{c+2b}+\frac{b}{a+2c}+\frac{c}{b+2a}\right)\left[a\left(c+2b\right)b\left(a+2c\right)c\left(b+2a\right)\right]\)
Như vậy lúc này ta được:
\(\frac{a}{c+2b}+\frac{b}{a+2c}+\frac{c}{b+2a}\ge\frac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\)
Vậy bài toán đã được chứng minh.
Lời giải:
Áp dụng bất đẳng thức AM_GM kết hợp với $abc=1$:
\(\frac{a}{b}+\frac{a}{c}+1\geq 3\sqrt[3]{\frac{a^2}{bc}}=3a\). Tương tự với các phân thức khác
\(\Rightarrow \frac{a}{b}+\frac{b}{c}+\frac{c}{a}+2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\geq \frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{b}{a}+\frac{c}{b}+\frac{a}{c}+3\geq 3(a+b+c)\)
Tiếp tục áp dụng AM_GM:
\(\frac{b}{a}+b^2c^2a+c\geq 3\sqrt[3]{b^3c^3}=3bc......\), công theo vế và rút gọn
\(\Rightarrow \frac{b}{a}+\frac{c}{b}+\frac{a}{c}+a+b+c\geq 2(ab+bc+ac)=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Cộng hai BĐT thu được lại, ta có:
\(\Rightarrow \frac{a}{b}+\frac{b}{c}+\frac{c}{a}+3\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\geq 2\left(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Ta có đpcm. Dấu $=$ xảy ra khi $a=b=c=1$
Áp dụng tính chất dãy tỷ số bằng nhau ta có:
\(\frac{a}{2015}=\frac{b}{2016}=\frac{c}{2017}=\frac{b-a}{1}=\frac{c-b}{1}=\frac{c-a}{2}\)
\(\Rightarrow2\left(b-a\right)=2\left(c-b\right)=\left(c-a\right)\)
\(\Rightarrow2\left(a-b\right)=2\left(b-c\right)=\left(a-c\right)\)
Ta có: \(4\left(a-b\right)\left(b-c\right)=2\left(a-b\right).2\left(b-c\right)=\left(a-c\right)\left(a-c\right)=\left(a-c\right)^2=\left(c-a\right)^2\)
Đặt : \(\frac{a}{2015}\)=\(\frac{b}{2016}\)=\(\frac{c}{2017}\)= k
\(\Rightarrow\) a= 2015k ; b= 2016k ; c= 2017k
Ta có : 4(a-b)(b-c)=(c-a)2 \(\Rightarrow\) 4(a-b)(b-c) = 4(2015k - 2016k).(2016k - 2017k) = 4.(-1)k.(-1)k = 4k2 (1)
(c-a)2 = (2017k - 2015k)2 = (2k)2 = 4k2 (2)
Từ (1) và (2) \(\Rightarrow\) đpcm
Mình chỉ góp ý thôi nha !!!