Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ADC: EG // DC (gt).
=> \(\dfrac{AE}{AD}=\dfrac{AG}{AB}\) (Định lý Talet). (1)
Xét tam giác ACB: HG // CB (gt).
=> \(\dfrac{AG}{AC}=\dfrac{AH}{AB}\) (Định lý Talet). (2)
Từ (1) và (2) => \(\dfrac{AE}{AD}=\dfrac{AH}{AB}\left(=\dfrac{AG}{AC}\right).\)
Xét tam giác ADB: \(\dfrac{AE}{AD}=\dfrac{AH}{AB}\left(cmt\right).\)
=> HE // BD (Định lý Talet đảo).
Bạn xem lời giải của cô Huyền ở đường link phía dưới nhé:
Câu hỏi của Edogawa Conan - Toán lớp 8 - Học toán với OnlineMath
Tham khảo link này: https://olm.vn/hoi-dap/detail/81945110314.html
hình tự vẽ nhé
do PK // BD =) áp dụng định lí ta-lét vào tam giác CBD được: CP/PB = CK/KD (1)
dễ dàng chứng minh được tứ giác ABKD là hình bình hành =) KD=AB và AD=BK
tương tự tứ giác ABCI cũng là hình bình hành =) AI =BC
có góc PKC= góc BDC (PK//BD)
góc BDA=góc BKP (cùng = DBK)
góc AID=góc BCK
dễ dàng =) góc ADI = góc BCK
=) góc DAI = góc KBC
=) tam giác DAI = tam giác KBC (c-g-c) =) DI=KC
vì AB//DI nên áp dụng hệ quả của định lí ta-lét đc: DI/AB=DM/MB=KC/KD (2)
từ (1) và (2) =) BM/MD = BP/PC
áp dụng định lí ta lét đảo =) MP//DC
chưa hiểu thì hỏi nhé