Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x) chia x+2 dư 10⇒f(−2)=10
f(x) chia x−2 dư 24⇒f(2)=24
f(x) chia x^2−4 sẽ có số dư cao nhất là đa thức bậc 1
⇒f(x)=(x^2−4).(−5x)+ax+b (1)
Lần lượt thay x=2 và x=−2 vào (1):
{24=2a+b {a=7/2 b=17
⇒f(x)=−5x(x^2−4)+7/2x+17=−5x^3+47/2x+17
tk nha
Từ \(f\left(x\right)\)chia cho \(x^2-4\), ta thấy đa thức \(x^2-4\)có bậc 2 nên đa thức dư là đa thức không quá bậc là 1.
Do đó gọi đa thức dư là \(ax+b\)khi chia \(f\left(x\right)\)cho \(x^2-4\). Theo đề bài, ta có:
\(f\left(x\right)=-5x\left(x^2-4\right)+ax+b\)
\(\Rightarrow f\left(x\right)=-5x\left(x-2\right)\left(x+2\right)+ax+b\left(1\right)\)
Thay \(x=2\)vào đẳng thức (1), ta được:
\(f\left(2\right)=\left(-5\right).2\left(2-2\right)\left(2+2\right)+2a+b\)
\(\Rightarrow f\left(2\right)=0+2a+b=2a+b\)
Gọi đa thức thương là \(A\left(x\right)\)khi chia \(f\left(x\right)\)cho \(x-2\), theo đề bài, ta có:
\(f\left(x\right)=A\left(x\right)\left(x-2\right)+24\left(2\right)\)
Thay \(x=2\)vào đẳng thúc (2), ta được:
\(f\left(2\right)=A\left(2\right)\left(2-2\right)+24\)
\(\Rightarrow f\left(2\right)=24\)
Do đó \(2a+b=24\left(3\right)\)
Gọi đa thức thương là \(B\left(x\right)\)khi chia \(f\left(x\right)\)cho \(x+2\), theo đề bài, ta có:
\(f\left(x\right)=B\left(x\right)\left(x+2\right)+10\left(4\right)\)
Thay \(x=-2\)vào đẳng thức (4), ta được:
\(f\left(-2\right)=B\left(-2\right)\left(-2+2\right)+10\)
\(\Rightarrow f\left(-2\right)=10\)
Thay \(x=-2\)vào đẳng thức (1), ta được:
\(f\left(-2\right)=\left(-5\right)\left(-2\right)\left(-2-2\right)\left(-2+2\right)-2a+b\)
\(\Rightarrow f\left(-2\right)=-2a+b\)
Do đó : \(-2a+b=10\left(5\right)\)
Từ (3) và (5).
\(\Rightarrow2a+b-2a+b=24+10\)
\(\Rightarrow2b=34\)
\(\Rightarrow b=17\)
Do đó \(2a+17=24\)
\(\Rightarrow2a=7\Rightarrow a=\frac{7}{2}\)
Thay vào đẳng thức (1), ta được:
\(f\left(x\right)=-5x\left(x^2-4\right)+\frac{7}{2}x+17\)
\(\Rightarrow f\left(x\right)=-5x^3+20x+\frac{7}{2}x+17\)
\(\Rightarrow f\left(x\right)=-5x^3+\frac{47}{2}x+17\)
Gọi thương của phép chia f(x) cho (x+2) là A(x); cho (x-2) là B(x)
Theo bài ra ta có: f(x) = (x+2).A(x) + 10 \(\Rightarrow\) f(-2) = 10
f(x) = (x-2).B(x) + 24 f(2) = 24
Gọi số dư khi chia f(x) cho x2 - 4 là ax + b
Ta có: \(f\left(x\right)=\left(x^2-4\right).\left(-5x\right)+ax+b\)
\(=\left(x-2\right)\left(x+2\right)\left(-5x\right)+ax+b\)
Vì biểu thức trên đúng với mọi x nên ta lần lượt thay \(x=-2;\)\(x=2\)vào biểu thức được:
\(f\left(-2\right)=-2a+b=10\) \(\Rightarrow\) \(a=3,5\)
\(f\left(2\right)=2a+b=24\) \(b=7\)
Vậy \(f\left(x\right)=\left(x^2-4\right).\left(-5x\right)+3,5x+7\)
\(=-5x^3+23,5x+7\)
P.s: tham khảo nhé
bài làm sai rồi
nếu a=3,5 và b=7 thì -2a+b=0
mà -2a+b=10
=> a=3,5 và b=7 (vô lí)
a) Tham khảo đây nhé
Câu hỏi của Bạch Quốc Huy - Toán lớp 8 - Học toán với OnlineMath
b) Ta có:
\(a^3+5a\)
\(=a^3-a+6a\)
\(=a\left(a^2-1\right)+6a\)
\(=a\left(a-1\right)\left(a+1\right)+6a\)
Vì a(a-1)(a+1) là tích của ba số nguyên liên tiếp nên chia hết chi 6
Và 6a chia hết cho 6
=> Đpcm
Gọi r(x) = ax + b là dư trong phép chia f(x) cho (x-1)(x-2)
Theo đề bài ta có :
f(x) = (x-1).A(x) + 2 [ A(x) là thương trong phép chia f(x) cho (x-1) ](1)
f(x) = (x+2).B(x) + 4 [ B(x) ___________________________ (x+2) ](2)
f(x) = (x-1)(x-2).C(x) + ax + b [ C(x) ___________________ (x-1)(x+2) ](3)
Với x = 1 ta có \(\hept{\begin{cases}\left(1\right)=2\\\left(3\right)=a+b\end{cases}}\Rightarrow a+b=2\)(*)
Với x = -2 ta có \(\hept{\begin{cases}\left(2\right)=4\\\left(3\right)=-2a+b\end{cases}}\Rightarrow-2a+b=4\)(**)
Từ (*) và (**) \(\Rightarrow\hept{\begin{cases}a+b=2\\-2a+b=4\end{cases}}\Leftrightarrow\hept{\begin{cases}3a=-2\\a+b=2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-\frac{2}{3}\\b=\frac{8}{3}\end{cases}}\)
Vậy dư là -2/3x + 8/3
Vì f(x) chia x+2 dư 10 nên f(x) -10 chia hết cho x+2
Theo Bezout ta có :
f(-2) - 10 = 0
=> f(-2) = 0
Cmtt f(2) = 22
Lại có : f(x) = -5x(x2 - 4) + ax+b (*)
Thay x = -2 vào (*) ta được:
f(-2) = -2a+b = 10
Thay x = 2 vào (*) ta được :
f(2) = 2a+b = 22
Giải bất phương trình \(\left\{{}\begin{matrix}-2a+b=10\\2a+b=22\end{matrix}\right.\)
Suy ra a= 3 ; b= 16
Vậy f(x) = -5x(x2-4)+3x+16