K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2019

Cảm ơn bạn nhiều nhé!

30 tháng 12 2016

khó kinh khủng

1 tháng 1 2017

Duong  nhien roi

12 tháng 8 2019

Ban tu ve hinh nha

( tam giac ABC vuong tai A , duong cao AH)

Xet tam giac HAB va tam giac HCA Co

\(\hept{\begin{cases}\widehat{AHB}=\widehat{CHA}=90\\\widehat{HBA}=\widehat{HAC}\left(phu\widehat{HAB}\right)\end{cases}=>\Delta HAB}\) dong dang voi \(\Delta HCA\left(G-G\right)\)

Suy ra\(\frac{AB}{AC}=\frac{HB}{HA}=\frac{HA}{HC}=\frac{4}{9}\left(gt\right)\) =>\(HB=\frac{4HA}{9},HC=\frac{9HA}{4}\) 

=>\(\frac{HB}{HA}=\frac{\frac{4HA}{9}}{\frac{9HA}{4}}=\frac{4HA}{9}.\frac{4}{9HA}=\frac{16}{81}\)

Suy ra ti so hinh chieu cua hai canh goc vuong do tren canh huyen =16/81

Chuc ban hoc tot

23 tháng 2 2016

Gọi độ dài 3 cạnh DABC lần lượt là a,b,c. Đường cao hạ từ các đỉnh A,B,C là x,y,z. Bán kính đường tròn nội tiếp tam giác ABC = 1. Khi đó ta có
SABC=1/2ax=1/2by=1/2cz=1/2(a+b+c)r
       => ax = by = cz = a+b+c   [*]
 ta có:
ax = by = cz => a: (1/ x)= b:(1/ y)=c:(1/z)
=> (a+b+c): (1/x+1/y+1/z) = a+b+c
=> (1/x+1/y+1/z) = 1
Giả sử:  0 ≤ x ≤ y ≤ z  =>1/x ≥1/y ≥ 1/z => 3/x ≤ 1  => x ≤ 3
Thử từng trường hợp:
*x=1. => Loại 
*x=2 =>1/y+1 / z= ½.  Mà x,y ϵ Z
=>y,z ϵ {(4,4);(3;6)}
y = z = 4   => 2a = 4b = 4c   Áp dụng BDT  tam giác vào  tam giác ABH thấy ko thỏa mãn=>loại
y=3;z=4⇒2a=3b=4c (loại)
*x=3
x = y = z = 3  => a=b=c=> tam giácABC:đều  (đpcm). 

26 tháng 2 2022

12 cạnh =)?

26 tháng 2 2022

12 cạnh