K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2017

a)ta có \(a^2+b^2\ge2ab\)

\(\Leftrightarrow1\ge ab\)

theo bđt cauchy schwarz ta có

\(\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\left(\dfrac{a}{b^2}+\dfrac{b}{a^2}\right)\ge2\sqrt{\dfrac{a.b}{a.b}}.2\sqrt{\dfrac{a.b}{a^2.b^2}}=2.1.2\dfrac{1}{1^2}=4\)

\(\Rightarrow dpcm\)

28 tháng 1 2018

câu 1: \(VT=\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)

15 tháng 6 2018

Bài 1:

Ta có: \(\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ac}}+\dfrac{c}{\sqrt{c^2+8ab}}=\dfrac{a^2}{a\sqrt{a^2+8bc}}+\dfrac{b^2}{b\sqrt{b^2+8ac}}+\dfrac{c^2}{c\sqrt{c^2+8ab}}\)

Áp dụng bđt Cauchy Schwarz có:

\(\dfrac{a^2}{a\sqrt{a^2+8bc}}+\dfrac{b^2}{b\sqrt{b^2+8ac}}+\dfrac{c^2}{c\sqrt{c^2+8ab}}\ge\dfrac{\left(a+b+c\right)^2}{a\sqrt{a^2+8bc}+b\sqrt{b^2+8bc}+c\sqrt{c^2+8bc}}\)

Lại sử dụng bđt Cauchy schwarz ta có:

\(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ac}+c\sqrt{c^2+8ab}=\sqrt{a}\cdot\sqrt{a^3+8abc}+\sqrt{b}\cdot\sqrt{b^3+8abc}+\sqrt{c}\cdot\sqrt{c^3+8abc}\ge\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+24abc\right)}\)

\(\Rightarrow\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ac}}+\dfrac{c}{\sqrt{c^2+8ab}}\ge\dfrac{\left(a+b+c\right)^2}{\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+24abc\right)}}=\sqrt{\dfrac{\left(a+b+c\right)^3}{a^3+b^3+c^3+24abc}}\)

=> Ta cần chứng minh: \(\left(a+b+c\right)^3\ge a^3+b^3+c^3+24abc\)

hay \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Áp dụng bđt Cosi ta có:

\(a+b\ge2\sqrt{ab};b+c\ge2\sqrt{bc};c+a\ge2\sqrt{ca}\)

Nhân các vế của 3 bđt trên ta đc:

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}=8\sqrt{a^2b^2c^2}=8abc\)

=> Đpcm

AH
Akai Haruma
Giáo viên
22 tháng 3 2017

Hình như sai đề =)))

22 tháng 3 2017

vế phải bình phương hầy

1)Tìm nghiệm nguyên dương của phương trình: \(\left\{{}\begin{matrix}x+y+z=15\\x^3+y^3+z^3=495\end{matrix}\right.\) 2) Cho a,b,c là 3 số thực không âm, tìm GTLN của biểu thức: \(M=\left(a+b+c\right)^3+a\left(2bc-1\right)+b\left(2ac-1\right)+c\left(2ab-1\right)\) 3) Giải phương trình: \(\sqrt{x-\sqrt{x^2-1}}=\dfrac{9\sqrt{2}}{4}\left(x-1\right)\sqrt{x-1}\) 4) Cho \(x^2+y^2+z^2=k\left(\forall k>0\right)\) cho trước. Tìm GTLN của...
Đọc tiếp

1)Tìm nghiệm nguyên dương của phương trình: \(\left\{{}\begin{matrix}x+y+z=15\\x^3+y^3+z^3=495\end{matrix}\right.\)

2) Cho a,b,c là 3 số thực không âm, tìm GTLN của biểu thức:

\(M=\left(a+b+c\right)^3+a\left(2bc-1\right)+b\left(2ac-1\right)+c\left(2ab-1\right)\)

3) Giải phương trình: \(\sqrt{x-\sqrt{x^2-1}}=\dfrac{9\sqrt{2}}{4}\left(x-1\right)\sqrt{x-1}\)

4) Cho \(x^2+y^2+z^2=k\left(\forall k>0\right)\) cho trước.

Tìm GTLN của \(A=k\left(xy+yz+xz\right)+\dfrac{1}{2}\left[x^2\left(y-z\right)^2+y^2\left(x-z\right)^2+z^2\left(x-y\right)^2\right]\)

5) Chứng minh rằng:

\(\left(3a+2b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\le\dfrac{45}{2}\)(Bài này quên điều kiện hay gì đó rồi, ae nếu thấy sai thì fix giùm)

6) Cho a là số thay đổi thỏa mãn: \(-1\le a\le1\)

Tìm GTLN của b sao cho bđt sau đúng:

\(2\sqrt{1-a^4}+\left(b-1\right)\left(\sqrt{1+a^2}-\sqrt{1-a^2}\right)+b-4\le0\)

7) Cho a,b,c dương thỏa mãn \(abc=1\). Chứng minh rằng:

\(\sum\dfrac{a}{\sqrt{8b^3+1}}\ge1\)

8) Cho a,b,c là các số thực dương. Chứng minh rằng:

\(\sum\dfrac{a^2-b^2}{\sqrt{b+c}}\ge0\)

5
15 tháng 12 2017

Bài 2: Restore : a;b;c không âm thỏa \(a^2+b^2+c^2=1\)

Tìm Min & Max của \(M=\left(a+b+c\right)^3+a\left(2bc-1\right)+b\left(2ac-1\right)+c\left(2ab-1\right)\)

Bài 4: Tương đương giống hôm nọ thôi : V

Bài 5 : Thiếu ĐK thì vứt luôn : V

Bài 7: Tương đương

( Hoặc có thể AM-GM khử căn , sau đó đổi \(\left(a;b;c\right)\rightarrow\left(\dfrac{x}{y};\dfrac{y}{z};\dfrac{z}{x}\right)\) rồi áp dụng bổ đề vasile)

Bài 8 : Đây là 1 dạng của BĐT hoán vị

12 tháng 12 2017

@Ace Legona @Akai Haruma @Hung nguyen @Hà Nam Phan Đình @Neet

AH
Akai Haruma
Giáo viên
14 tháng 5 2018

Câu 2:

Áp dụng BĐT Bunhiacopxky:

\(\left(a^2+\frac{1}{2}+\frac{1}{2}\right)[1+2+2(b+c)^2]\geq (a+1+b+c)^2\)

\(\Rightarrow \frac{5}{16}(a^2+1)[3+2(b+c)^2]\geq \frac{5}{16}(a+b+c+1)^2\)

Để hoàn thành bài toán ta cần chứng minh:

\((a^2+1)(b^2+1)(c^2+1)\geq \frac{5}{16}(a^2+1)[3+2(b+c)^2]\)

\(\Leftrightarrow (b^2+1)(c^2+1)\geq \frac{5}{16}[3+2(b+c)^2]\)

\(\Leftrightarrow b^2c^2+\frac{3}{8}(b^2+c^2)+\frac{1}{16}-\frac{5}{4}bc\geq 0\)

\(\Leftrightarrow (bc-\frac{1}{4})^2+\frac{3}{8}(b-c)^2\geq 0\)

(Luôn đúng)

Ta có đpcm

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{2}\)

 

 

AH
Akai Haruma
Giáo viên
14 tháng 5 2018

Câu 1:

Áp dụng BĐT Bunhiacopxky:

\((a^2+1+2)\left[1+1+\frac{(b+c)^2}{2}\right]\geq (a+1+b+c)^2\)

\(\Rightarrow 4(a^2+3)\left[2+\frac{(b+c)^2}{2}\right]\geq 4(a+b+c+1)^2\)

Để hoàn thành bài toán ta cần chứng minh:

\((a^2+3)(b^2+3)(c^2+3)\geq 4(a^2+3)\left[2+\frac{(b+c)^2}{2}\right]\)

\(\Leftrightarrow (b^2+3)(c^2+3)\geq 8+2(b+c)^2\)

\(\Leftrightarrow b^2c^2+b^2+c^2+1-4bc\geq 0\)

\(\Leftrightarrow (bc-1)^2+(b-c)^2\geq 0\) (luôn đúng)

Do đó ta có đpcm

Dấu bằng xảy ra khi \(a=b=c=1\)

3)a) Áp dụng BĐT Bunyakovsky 2 lần, ta có: \(\left(1+x^2\right)\left(1+y^2\right)\ge\left(x+y\right)^2\) \(\left(1+x^2\right)\left(1+y\right)^2\ge\left(1+xy\right)^2\) Nhân vế theo vế rồi khai phương ta được đpcm. b)...
Đọc tiếp

3)a) Áp dụng BĐT Bunyakovsky 2 lần, ta có:

\(\left(1+x^2\right)\left(1+y^2\right)\ge\left(x+y\right)^2\)

\(\left(1+x^2\right)\left(1+y\right)^2\ge\left(1+xy\right)^2\)

Nhân vế theo vế rồi khai phương ta được đpcm.

b) \(\dfrac{a^2+b^2}{ab}+\dfrac{\sqrt{ab}}{a+b}\ge\dfrac{\left(a+b\right)^2}{2ab}+\dfrac{4\sqrt{ab}}{a+b}+\dfrac{4\sqrt{ab}}{a+b}-\dfrac{7\sqrt{ab}}{a+b}\ge3\sqrt[3]{\dfrac{\left(a+b\right)^2}{2ab}.\dfrac{4\sqrt{ab}}{a+b}.\dfrac{4\sqrt{ab}}{a+b}}-\dfrac{7}{2}=3.2-\dfrac{7}{2}=\dfrac{5}{2}\)

Lưu ý: \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2};\dfrac{\sqrt{ab}}{a+b}\le\dfrac{1}{2}\)

1.2) \(a^3-3a^2+8a=9\Leftrightarrow\left(a-1\right)^3+5a-8=0\)

\(b^3-6b^2+17b=15\Leftrightarrow\left(b-2\right)^3+5b-7=0\)

Cộng vế theo vế, áp dụng HĐT cho 2 cái mũ 3 rồi suy ra được a+b=3

1.1 Phương trình tương đương \(x^2-2x+1=2-x\sqrt{x-\dfrac{1}{x}}\)

Chia cả 2 vế cho x, chuyển vế, rút gọn, ta được

\(\left(x-\dfrac{1}{x}\right)+\sqrt{x-\dfrac{1}{x}}-2=0\)

Đặt \(\sqrt{x-\dfrac{1}{x}}=t\ge0\) thì ta có:

\(t^2+t-2=0\Rightarrow\)Chọn t=1 vì \(t\ge0\)

\(\Rightarrow\sqrt{x-\dfrac{1}{x}}=1\) giải ra kết luận được 2 nghiệm \(x_1=\dfrac{1+\sqrt{5}}{2};x_2=\dfrac{1-\sqrt{5}}{2}\)

Bài 2: Bó tay nha con ngoan^^

Mấy CTV đừng xóa, để người cần đọc đã ;V

1
2 tháng 12 2017

Unruly Kid Rr :))

2 tháng 12 2017

:))