K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2016

A B C D I M E   

Chứng minh: 

a) - Xét ΔABD và ΔAID có

       Góc ABD = Góc AID (=90 độ)

       AD chung 

       Góc BAD = Góc IAD ( AD là phân giác của góc A)

→ ΔABD = ΔAID (Cạnh huyền - góc nhọn)

    →AB = AI (2 cạnh tương ứng)

        BD = BI (2 cạnh tương ứng)

b) - Xét ΔBMD và ΔICD có:

        Góc MBD = Góc CID (=90 độ)

        BD = BI (CMT)

         Góc BDM = Góc IDC (Đối đỉnh)

→ ΔBMD = ΔICD (g.c.g)

  → DM = DC (2 cạnh tương ứng)

      BM = IC   ( nt )

c) - Ta có:

AB = AI (CMT) và BM = IC (CMT)

→ AB + BM = AI + IC → AM = AC

          → ΔAMC cân tại A                                                                                            (1)

   - Mà: 

ΔABC là tam giác nửa đều (Góc B = 90 độ, Góc C = 30 độ → Góc A =60 độ)                     (2)

Từ (1) và (2) 

→ ΔAMC là tam giác đều

d) - Ta có: MD = MC (CMT)                                                                                               (3)

    - Xét ΔIDC có góc DIC = 90 độ

                           góc ICD = 30 độ

→ ID =  \(\frac{1}{2}\) DC (Trong Δ vuông, cạnh đối diện với góc 30 độ bằng nửa cạnh huyền)         (4)

Từ (3) và (4) 

→ ID = \(\frac{1}{2}\) MD

- Xong rồi nhé

- Mất 1 tiếng ngồi vẽ hình và ngồi nghĩ cho bạn đấy

- GT, KL bạn tự làm

- Hon CM có hơi dài dòng còn có đúng không thì có đấy, chỉ là dài thôi

- Tham khảo, chép xong thì đọc lại xem hiểu không

- Bài này không phải dạng vừa đâu!!

- Có gì cho Hon không nạ

- Chúc bạn học tốt, thi học kì đứng trong TOP 3 nhann

 

9 tháng 5 2016

cảm ơn bn rất nhiều yeu

a: Xét ΔABD vuông tại B và ΔAID vuông tại I có

AD chung

\(\widehat{BAD}=\widehat{IAD}\)

Do đó: ΔABD=ΔAID

Suy ra: AB=AI

hay ΔABI cân tại A

b: Xét ΔBDM vuông tại B và ΔIDC vuông tại I có

DB=DI

\(\widehat{BDM}=\widehat{IDC}\)

Do đó: ΔBDM=ΔIDC

Suy ra: DM=DC

c: Ta có: ΔBDM=ΔIDC

nên BM=IC

Ta có: AB+BM=AM

AI+IC=AC

mà AB=AI

và BM=IC

nên AM=AC
hay ΔAMC cân tại A

mà \(\widehat{MAC}=60^0\)

nên ΔAMC đều

a: Xét ΔABD vuông tại B và ΔAID vuông tại I có

AD chung

góc BAD=góc IAD

=>ΔABD=ΔAID

=>AB=AI

b: Xét ΔDBM vuông tại B và ΔDIC vuông tại I có

DB=DI

góc BDM=góc IDC

=>ΔBDM=ΔIDC

=>DM=DC

c: AB+BM=AM

AI+IC=AC

mà AB=AI và MB=IC

nên AM=AC

mà góc MAC=60 độ

nên ΔMAC đều

d: Xét ΔDBM vuông tại B có sin M=BD/DM

=>BD/DM=1/2

=>DM=2BD=2DI

24 tháng 4 2018

Mình cx đg cần câu trả lời của bài này.

28 tháng 4 2018

ai giải đc bài này ko ???

17 tháng 2 2020

a,Ta có : ABC^+BAC^+BCA^=180* ( đl tổng 3 góc )

=> 90*+BAC^+30*=180*

=>BAC^=180*-120*=60* 

Do AM là tia p/g của BAC^

=> BAM^=MAN^=60*/2=30*

Xét tam giác vuông ABM và tam giác vuông ANM 

AM cạnh chung

BAM^=MAN^

=>tam giác ABM = tam giác ANM ( ch-gn )

=>AB=AN (2 cạnh tương ứng)

b,Xét tam giác vuông IBM và tam giác vuông CNM 

BMI^=NMC^ ( đối đỉnh )

BM = NM ( cm câu a )

=> tam giác IBM = tam giác CNM ( cgv-gn )

c, Ta có : BMI^ + MBI^ + BIM ^ = 180*

=>BMI^ + 90* + 30* = 180* 

=> BMI^=180*-120*=60*

Do BMI^=CMN^

=>BMI^=CMN^=60*

Lại có IMN^=180* ( góc bẹt )

Mà : IMC^+CMN^=180*

=>IMC^=180*-60*=120* 

Mặt khác : IM=MC (cm câu b)

=> tam giác IMC cân tại M

=>MIC^=MCI^ 

dễ thấy : IMC^+MIC^+MCI^=180*

=>MIC^+MCi^=180*-120*=60*

do :MIC^=MCI^

=>MIC^=MCI^=60*/2=30*

Ta có :+)AIC^=BIM^+CIM^=30*+30*=60*

           +)ACI^=NCM^+MCI^=30*+30*=60*

           +)IAC^=60*

=>tam giác IAC là tam giác đều

Hộ mik với ạ mik cần gấp cảm ơn ạBài 1: Cho ∆MNP có MN =8cm, MP = 15cm, NP = 17cm.a) Chứng minh ∆MNP vuôngb) Kẻ tia phân giác NI của góc MNP (I MP). Từ I kẻ IK vuông góc với NP.Chứng minh ∆MNI = ∆KIc) Tia IK cắt tia NM tại Q. Chứng minh KP = MQd) Từ M kẻ tia Mx//IK cắt NI ở H. Chứng minh ∆MIH cânBài 2: Cho ∆ABC cân tại A có AB = AC = 5cm, BC= 6cm. Kẻ AD vuông góc vớiBC tại D. Kẻ DE vuông góc với AB tại E, DF...
Đọc tiếp

Hộ mik với ạ mik cần gấp cảm ơn ạ

Bài 1: Cho ∆MNP có MN =8cm, MP = 15cm, NP = 17cm.
a) Chứng minh ∆MNP vuông
b) Kẻ tia phân giác NI của góc MNP (I MP). Từ I kẻ IK vuông góc với NP.
Chứng minh ∆MNI = ∆KI
c) Tia IK cắt tia NM tại Q. Chứng minh KP = MQ
d) Từ M kẻ tia Mx//IK cắt NI ở H. Chứng minh ∆MIH cân
Bài 2: Cho ∆ABC cân tại A có AB = AC = 5cm, BC= 6cm. Kẻ AD vuông góc với
BC tại D. Kẻ DE vuông góc với AB tại E, DF vuông góc với AC tại F.
a) Chứng minh ∆ADB = ∆ADC
b) Tính độ dài AC
c) Giả sử ̂ = 740

. Tính góc ABC

d) Chững minh DE = DF
e) Chứng minh AE = AF
f) Chứng minh DE //BC
Bài 3: Cho ∆MNP có MN = MP = 13cm, NP = 10cm. Kẻ MD vuông góc với NP
tại D.
a) Chứng minh: ND = PD và ̂ ̂
b) Tính độ dài MD
c) Kẻ DA vuông góc MN tại I và IA = ID; kẻ DB vuông góc MP tại H và DH =
BH. Chứng minh rằng AM = MD
d) Chứng minh ∆MAB cân
e) Chứng minh AN vuông góc AM
f) Gọi giao điểm của AB và MN là E, giao điểm của AB và MP là F. Chứng
minh DM là tia phân giác của góc EDF
Bài 4: Cho ∆ABC vuông tại A có AB = 3cm, AC = 4cm.
a) Tính độ dài BC
b) Trên tia đối của tia AC lấy điểm D sao cho AD = AB. ∆ABD có dạng đặc
biệt gì? Vì sao?
c) Lấy trên tia đối của tia AB điểm E sao cho AE = AC .chứng minh DE = BC
Bài 5: cho ∆ABC cân tại A, có góc C= 300

. Vẽ phân giác AD ( D BC). Vẽ DE

vuông góc với AB, DF vuông góc AC.
a) Chứng minh ∆DEF đều
b) Chứng minh ∆BED = ∆CFD
c) Kẻ BM//AD ( M AC) chứng minh ∆ABM đều

0
29 tháng 3 2016

gócDCB=gócEBC=góc1/2ACB=góc1/2ABC

a)xét tg DCB và tg EBC có

BC là cạnh  chung

góc B=góc C

góc DCB=góc EBC

suy ra  tg DCB = tg EBC(g.c.g)

suy ra CD=BE(hai cạnh tương ứng)

xét tgADC và tgAEB có 

góc A là góc chung là góc vuông

AB=AC

DC=EB

suy ra tgADC = tgAEB (ch.cgv)

suy ra AD=AE(hai cạnh tương ứng)

câu b và câu c k xong đi rồi nói

Bài 25: Cho tg ABC có B=C.Tia phân giác của góc A cắt BC tại D. Chứng minh rằng:a) tg ADB = tg ADCb) AB = ACBài 26: Cho góc xOy khác góc bẹt. Ot là phân giác của góc đó. Qua điểm H thuộc tia Ot,kẻ đường vuông góc với Ot, nó cắt Ox và Oy theo thứ tự là A và B.a) Chứng minh rằng OA = OB;b) Lấy điểm C thuộc tia Ot, chứng minh rằng CA = CB và OAC=OBCBài 27. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy...
Đọc tiếp

Bài 25: Cho tg ABC có B=C.Tia phân giác của góc A cắt BC tại D. Chứng minh rằng:
a) tg ADB = tg ADC
b) AB = AC
Bài 26: Cho góc xOy khác góc bẹt. Ot là phân giác của góc đó. Qua điểm H thuộc tia Ot,
kẻ đường vuông góc với Ot, nó cắt Ox và Oy theo thứ tự là A và B.
a) Chứng minh rằng OA = OB;
b) Lấy điểm C thuộc tia Ot, chứng minh rằng CA = CB và OAC=OBC
Bài 27. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D
sao cho OA = OB, AC = BD.
a) Chứng minh: AD = BC.
b) Gọi E là giao điểm AD và BC. Chứng minh: tg EAC = tg EBD
c) Chứng minh: OE là phân giác của góc xOy, OE vuông góc CD
Bài 28 : Cho tam giác ABC với AB = AC. Lấy I là trung điểm BC. Trên tia BC lấy
điểm N, trên tia CB lấy điểm M sao cho CN=BM.
a) Chứng minh tg ABI= tg ACI và AI là tia pg của góc BAC
b)Chứng minh AM=AN.
c) Chứng minh AI vuông góc BC.

1
26 tháng 2 2020

1)A) vì \(\Delta ABC\)CÓ \(\widehat{B}=\widehat{C}\)

\(\Rightarrow\Delta ABC\)CÂN TẠI A

\(\Rightarrow AB=AC\)

XÉT \(\Delta ADB\)\(\Delta ADC\)

\(AB=AC\left(CMT\right)\)

\(\widehat{ADB}=\widehat{ADC}\left(GT\right)\)

\(AD\)LÀ CẠNH CHUNG

\(\Rightarrow\Delta ADB=\Delta ADC\left(C-G-C\right)\)

B)VÌ\(\Delta ABC\)CÓ \(\widehat{B}=\widehat{C}\)

\(\Rightarrow\Delta ABC\)CÂN TẠI A

=> AB=AC