K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2021

Thay \(x=3;y=-1\)

\(HPT\Leftrightarrow\left\{{}\begin{matrix}6-a=b+4\\3a-b=8+9a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=2\\6a+b=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5a=-10\\a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=4\end{matrix}\right.\)

1 tháng 12 2021

lỗi!

2 tháng 12 2021

Đặt S=x+y, P=x.y
Ta có:S=2a-1, x^2+y^2=S^2-2P=a^2+2a-3
\Rightarrow P=\frac{1}{2}[(2a-1)^2-(a^2+2a-3)]=\frac{1}{2}(3a^2-6a+4)
Trước hết tìm a để hệ có nghiệm.
Điều kiện để hệ có nghiệm:S^2-4P \geq 0 \Leftrightarrow (2a-1)^2-2(3a^2-6a+4)\geq 0
\Leftrightarrow -2a^2+8a-7 \geq 0 \leftrightarrow 2-\frac{\sqrt{2}}{2} \leq a \leq 2+\frac{\sqrt{2}}{2}      (1)
Tìm a để P=\frac{1}{2}(3a^2-6a+4) đạt giá trị nhỏ nhất trên đoạn
        [2-\frac{\sqrt{2}}{2} ;2+\frac{\sqrt{2}}{2}]
Ta có hoành độ đỉnh a_0=\frac{6}{2.3}=1Parabol có bề lõm quay lên do đó \min P=P(2-\frac{\sqrt{2}}{2} )$
Vậy với a=2-\frac{\sqrt{2}}{2}  thì xy đạt giá trị nhỏ nhất.

NV
14 tháng 8 2020

\(\Leftrightarrow\left\{{}\begin{matrix}2x+2y=6m+4\\3x-2y=11-m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x=5m+15\\3x-2y=11-m\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=m+3\\y=2m-1\end{matrix}\right.\)

\(A=x^2-y^2=\left(m+3\right)^2-\left(2m-1\right)^2\)

\(=-3m^2+10m+8=-3\left(m-\frac{5}{3}\right)^2+\frac{49}{3}\le\frac{49}{3}\)

\(A_{max}=\frac{49}{3}\) khi \(m=\frac{5}{3}\)

4 tháng 1 2019

mình giải tắt nhé vì mình không giỏi dùng công thức. Thông cảm nha.

1.

\(\left\{{}\begin{matrix}3x-y=2m+3\\x+y=3m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m}{4}+1\\y=\dfrac{-5m}{4}\end{matrix}\right.\)

vậy phương trình có nghiệm duy nhất là \(\left(\dfrac{m}{4}+1;\dfrac{-5m}{4}\right)\)

Thay vào đẳng thức ta được:

\(\left(\dfrac{m}{4}+1\right)^2+\left(\dfrac{-5m}{4}\right)^2=5\\ \Leftrightarrow x=\)

6 tháng 1 2019

k sao đâu bạn mình cảm ơn ạ

18 tháng 2 2019

1. Giải phương trình, hệ phương trình:

a) 2x2 - 5x + 3 = 0

\(\Leftrightarrow2x^2-2x-3x+3=0\)

\(\Leftrightarrow2x\left(x-1\right)-3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{3}{2}\end{matrix}\right.\)

b) x2 - 3x = 0

\(\Leftrightarrow x\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

c)\(\left\{{}\begin{matrix}2\left(x+1\right)-5\left(y+1\right)=5\\3\left(x+1\right)-2\left(y+1\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6\left(x+1\right)-15\left(y+1\right)=15\\6\left(x+1\right)-4\left(y+1\right)=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-11\left(y+1\right)=13\\3\left(x+1\right)-2\left(y+1\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+1=\dfrac{-13}{11}\\3\left(x+1\right)-2.\left(-\dfrac{13}{11}\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{24}{11}\\3\left(x+1\right)=-\dfrac{15}{11}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{24}{11}\\x=-\dfrac{16}{11}\end{matrix}\right.\)

Hix ,mệt quá.

18 tháng 2 2019

\(d,\left\{{}\begin{matrix}\dfrac{15}{x}-\dfrac{7}{y}=9\\\dfrac{4}{x}+\dfrac{9}{y}=35\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{60}{x}-\dfrac{28}{y}=36\\\dfrac{60}{x}+\dfrac{135}{y}=525\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{163}{y}=-489\\\dfrac{60}{x}+\dfrac{135}{y}=525\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{3}\\\dfrac{60}{x}+405=525\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{3}\\x=\dfrac{1}{2}\end{matrix}\right.\)

13 tháng 2 2019

\(\left(I\right)\left\{{}\begin{matrix}mx+y=7\left(1\right)\\2x-y=-4\left(2\right)\end{matrix}\right.\)

Từ (2) ta được \(y=2x+4\)

Thay \(y=2x+4\) vào (1) ta có:

\(mx+2x+4=7\Leftrightarrow\left(m+2\right)x=3\)

\(x=\dfrac{3}{m+2}\)

P = \(x^2 + y^2\)= \(x^2+(2x+4)^2=x^2+4x^2+16x+16\)

P= \(5x^2+16x+16=5\bigg(x^2+\dfrac{16}{5}x\bigg)+16\)

P= \(5\bigg(x^2+2. \dfrac{8}{5}x+( \dfrac {8}{5})^2 - \big( \dfrac {8}{5} \big)^2\bigg)+16\)

P= \(5\bigg(x+ \dfrac{8}{5}\bigg)^2+16-5. \bigg(\dfrac{8}{5}\bigg)^2=5\bigg( x+ \dfrac{8}{5}\bigg)^2+ \dfrac{16}{5}\) \(\ge\dfrac{16}{5}\)

Dấu "=" xảy ra \(\Leftrightarrow x+\dfrac{8}{5}=0\Leftrightarrow x=\dfrac{-8}{5}\)

\(\dfrac{3}{m+2}=-\dfrac{8}{5}\Rightarrow m=-\dfrac{31}{8}\)

Vậy \(m=-\dfrac{31}{8} \) thì \(P_{min}=\dfrac{16}{5}\)

9 tháng 2 2017

\(\Leftrightarrow\left\{\begin{matrix}\left(x-2y\right)^2=\left(3-m\right)^2\\\left(2x+y\right)^2=9\left(m+2\right)^2\end{matrix}\right.\)

Cộng lại:

5(x^2+y^2)=(3-m)^2+9(m+2)^2

=10m^2+30m+45

P=x^2+y^2=2m^2+6m+9

=>Pmin khi m=-3/2

9 tháng 2 2017

b)

công lại=> (m+2)x=7

vói m=-2 vô nghiệm => đk m khác -2

x=7/(m+2)

thế vào 2

\(y=\frac{7}{m+2}-2=\frac{3-m}{m+2}\)

\(x+y=\frac{7}{m+2}+\frac{3-m}{m+2}=\frac{10-m}{m+2}\)

\(x+y=1\Leftrightarrow\frac{10-m}{m+2}=1\Rightarrow\frac{\left(10-m\right)-\left(m+2\right)}{m+2}=0\Rightarrow8-2m=0\Rightarrow m=4\)

Bìa 1: Gải các hệ phương trình: a) \(\left\{{}\begin{matrix}x-y=3\\3x-4y=2\end{matrix}\right.\) b)\(\left\{{}\begin{matrix}\dfrac{x}{2}-\dfrac{y}{3}=1\\5x-8y=3\end{matrix}\right.\) Bài 2: Gải các hệ phương trình: a) \(\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\\left(x+y\right)+2\left(x-y\right)=5\end{matrix}\right.\) b)...
Đọc tiếp

Bìa 1: Gải các hệ phương trình:

a) \(\left\{{}\begin{matrix}x-y=3\\3x-4y=2\end{matrix}\right.\) b)\(\left\{{}\begin{matrix}\dfrac{x}{2}-\dfrac{y}{3}=1\\5x-8y=3\end{matrix}\right.\)

Bài 2: Gải các hệ phương trình:

a) \(\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\\left(x+y\right)+2\left(x-y\right)=5\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}\left(x+1\right)\left(y-1\right)=xy-1\\\left(x-3\right)\left(y+3\right)=xy-3\end{matrix}\right.\)

Bài 3: Gải các hệ phương trình:

a) \(\left\{{}\begin{matrix}\dfrac{1}{x-2}+\dfrac{1}{2y-1}=2\\\dfrac{2}{x-2}-\dfrac{3}{2y-1}=1\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}\dfrac{1}{2x+y}+\dfrac{1}{x-2y}=\dfrac{5}{8}\\\dfrac{1}{2x+y}-\dfrac{1}{x-2y}=\dfrac{3}{8}\end{matrix}\right.\)

c)\(\left\{{}\begin{matrix}3\sqrt{x-1}+2\sqrt{y}=13\\2\sqrt{x-1}-\sqrt{y}=4\end{matrix}\right.\) d) \(\left\{{}\begin{matrix}\left|x-1\right|+\left|y+2\right|=2\\4\left|x-1\right|+3\left|y+2\right|=7\end{matrix}\right.\)

Bài 4: Cho hệ phương trình \(\left\{{}\begin{matrix}\left(3a-2\right)x+2\left(2b+1\right)y=30\\\left(a+2\right)x-2\left(3b-1\right)y=-20\end{matrix}\right.\) Tìm các giá trị của a,b để hệ phương trình có nghiệm (3;-1)

cảm ơn mn trước ạ ! hehe

2
12 tháng 1 2019

3a)\(\left\{{}\begin{matrix}\dfrac{1}{x-2}+\dfrac{1}{2y-1}=2\\\dfrac{2}{x-2}-\dfrac{3}{2y-1}=1\end{matrix}\right.\) (ĐK: x≠2;y≠\(\dfrac{1}{2}\))

Đặt \(\dfrac{1}{x-2}=a;\dfrac{1}{2y-1}=b\) (ĐK: a>0; b>0)

Hệ phương trình đã cho trở thành

\(\left\{{}\begin{matrix}a+b=2\\2a-3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2-b\\2\left(2-b\right)-3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2-b\\4-2b-3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2-b\\b=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{7}{5}\left(TM\text{Đ}K\right)\\b=\dfrac{3}{5}\left(TM\text{Đ}K\right)\end{matrix}\right.\) Khi đó \(\left\{{}\begin{matrix}\dfrac{1}{x-2}=\dfrac{7}{5}\\\dfrac{1}{2y-1}=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7\left(x-2\right)=5\\3\left(2y-1\right)=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x-14=5\\6y-3=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{19}{7}\left(TM\text{Đ}K\right)\\y=\dfrac{4}{3}\left(TM\text{Đ}K\right)\end{matrix}\right.\) Vậy hệ phương trình đã cho có nghiệm duy nhất (x;y)=\(\left(\dfrac{19}{7};\dfrac{4}{3}\right)\)

b) Bạn làm tương tự như câu a kết quả là (x;y)=\(\left(\dfrac{12}{5};\dfrac{-14}{5}\right)\)

c)\(\left\{{}\begin{matrix}3\sqrt{x-1}+2\sqrt{y}=13\\2\sqrt{x-1}-\sqrt{y}=4\end{matrix}\right.\)(ĐK: x≥1;y≥0)

\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-1}+2\sqrt{y}=13\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-1}+4\sqrt{x-1}=13\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7\sqrt{x-1}=13\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}49\left(x-1\right)=169\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}49x-49=169\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{218}{49}\\y=\dfrac{4}{49}\end{matrix}\right.\left(TM\text{Đ}K\right)\)

31 tháng 12 2022

Bài 4:

Theo đề, ta có hệ:

\(\left\{{}\begin{matrix}3\left(3a-2\right)-2\left(2b+1\right)=30\\3\left(a+2\right)+2\left(3b-1\right)=-20\end{matrix}\right.\)

=>9a-6-4b-2=30 và 3a+6+6b-2=-20

=>9a-4b=38 và 3a+6b=-20+2-6=-24

=>a=2; b=-5