Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Này Phú Hưng (Phú và Hưng), cho mk hỏi tại sao từ \(x^2-x-2=0\) lại chuyển sang đc \(\left(x-2\right).\left(x+1\right)=0\). Làm cách nào vậy bn, bn có thể chỉ cho mk chi tiết cách chuyển đó ko.Cám ơn bn trc nha Phú Hưng (Phú và Hưng)
a) M(x) = A(x) - 2B(x) + C(x)
\(\Leftrightarrow\)M(x) = 2x5 - 4x3 + x2 - 2x + 2 - 2(x5 - 2x4 + x2 - 5x + 3) + x4 + 4x3 + 3x2 - 8x + \(4\frac{3}{16}\)
\(\Leftrightarrow\)M(x) = 2x5 - 4x3 + x2 - 2x + 2 - 2x5 - 4x4 - 2x2 + 10x - 6 + x4 + 4x3 + 3x2 - 8x + \(4\frac{3}{16}\)
\(\Leftrightarrow\)M(x) = (2x5 - 2x5) + (-4x3 + 4x3) + (x2 - 2x2 + 3x2) + (-2x + 10x - 8x) + (2 - 6 + \(4\frac{3}{16}\))
\(\Leftrightarrow\)M(x) = 2x2 + \(\frac{3}{16}\)
b) Thay \(x=-\sqrt{0,25}\)vào M(x), ta được:
\(M\left(x\right)=2\left(-\sqrt{0,25}\right)^2+\frac{3}{16}\)
\(M\left(x\right)=2.0,25+\frac{3}{16}\)
\(M\left(x\right)=0,5+\frac{3}{16}\)
\(M\left(x\right)=\frac{11}{16}\)
c) Ta có : \(x^2\ge0\)
\(\Leftrightarrow2x^2+\frac{3}{16}\ge\frac{3}{16}\)
Vậy để \(M\left(x\right)=0\Leftrightarrow x\in\varnothing\)
a) Thu gọn, sắp xếp các đa thức theo lũy thừa tăng của biến
f(x)=x2+2x3−7x5−9−6x7+x3+x2+x5−4x2+3x7
= -9 - 2x2 + 3x3 - 6x5 - 3x7
g(x)=x5+2x3−5x8−x7+x3+4x2−5x7+x4−4x2−x6−12
= -12 + 3x3 + x4 + x5 - x6 - 6x7 - 5x8
h(x)=x+4x5−5x6−x7+4x3+x2−2x7+x6−4x2−7x7+x
= 2x - 3x2 + 4x3 +4x5 -4x6 - 10x7
b) Tính f(x) + g(x) − h(x) = ( -9 - 2x2 + 3x3 - 6x5 - 3x7 ) + (-12 + 3x3 + x4 + x5 - x6 - 6x7 - 5x8 ) - (2x - 3x2 + 4x3 +4x5 -4x6 - 10x7)
= - 9 - 2x2 + 3x3 - 6x5 - 3x7 -12 + 3x3 + x4 + x5 - x6 - 6x7 - 5x8 - 2x + 3x2 - 4x3 - 4x5 + 4x6 + 10x7
= -21 - 2x + x2 + 2x3 + x4 - 9x5 + 3x6 + x7 - 5x8