\(0< a_1< a_2< a_3< ...< a_{15}\). Chững minh rằn...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2018

hỏi mỗi từng câu 1 thôi nhé ! Vậy mình giải cho . Mình k có ý kiếm GP + SP đâu . Nhưng nhìn 8 câu này hoa hết cả mắt :v

3 tháng 12 2018

Đúng thật. Tớ nhìn cũng thấy ngán mà. Nhiều quá nên hơi nản limdim

25 tháng 11 2017

Sai đề.

7 tháng 8 2017

\(a_1< a_2< a_3< ...< a_{15}\) ta có:

\(\dfrac{a_1+a_2+a_3+...+a_{15}}{a_5+a_{10}+a_{15}}< \dfrac{a_5+a_{10}+a_{15}+a_5+a_{10}+a_{15}+...+a_5+a_{10}+a_{15}}{a_5+a_{10}+a_{15}}\)\(\Rightarrow\dfrac{a_1+a_2+a_3+...+a_{15}}{a_5+a_{10}+a_{15}}< \dfrac{5\left(a_5+a_{10}+a_{15}\right)}{a_5+a_{20}+a_{15}}\)

\(\Rightarrow\dfrac{a_1+a_2+a_3+...+a_{15}}{a_5+a_{10}+a_{15}}< 5\)

\(\rightarrowđpcm\)

4 tháng 7 2017

Bài 1:

a) \(\left(\dfrac{1}{9}-1\right)\left(\dfrac{1}{10}-1\right)......\left(\dfrac{1}{2004}-1\right)\left(\dfrac{1}{2005}-1\right)\)

= \(\dfrac{-8}{9}.\dfrac{-9}{10}.......\dfrac{-2003}{2004}.\dfrac{-2004}{2005}\) = \(\dfrac{-8}{2005}\)

b) \(-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{-2+3}}}\) = \(-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{1}}}\)

= \(-2+\dfrac{1}{-2+\dfrac{1}{-1}}\) = \(-2+\dfrac{1}{-3}\) = \(\dfrac{-7}{3}\)

4 tháng 7 2017

\(\text{Câu 1 : }\) Tính

\(\text{a) }\left(\dfrac{1}{9}-1\right)\left(\dfrac{1}{10}-1\right)...\left(\dfrac{1}{2004}-1\right)\left(\dfrac{1}{2005}-1\right)\\ =\left(1-\dfrac{9}{9}\right)\left(\dfrac{1}{10}-\dfrac{10}{10}\right)...\left(\dfrac{1}{2004}-1\right)\left(\dfrac{1}{2005}-\dfrac{2005}{2005}\right)\\ =\dfrac{-8}{9}\cdot\dfrac{-9}{10}\cdot...\cdot\dfrac{-2003}{2004}\cdot\dfrac{-2004}{2005}\\ =\dfrac{\left(-8\right)\cdot\left(-9\right)\cdot..\cdot\left(-2003\right)\cdot\left(-2004\right)}{9\cdot10\cdot...\cdot2004\cdot2005}\\ =-\dfrac{8\cdot9\cdot...\cdot2003\cdot2004}{9\cdot10\cdot...\cdot2004\cdot2005}\\ =-\dfrac{8}{2005}\)

\(-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{-2+3}}}\\ =-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{1}}}\\ =-2+\dfrac{1}{-2+\dfrac{1}{-1}}\\ =-2+\dfrac{1}{-3}\\ =-2+\dfrac{-1}{3}=-\dfrac{7}{3}\)

8 tháng 7 2017

Bài 1:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\)

\(\Rightarrow\left\{{}\begin{matrix}3x-2y=0\Rightarrow3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\\2z-4x=0\Rightarrow2z=4x\Rightarrow\dfrac{x}{2}=\dfrac{z}{4}\end{matrix}\right.\)

\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{18}{9}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=6\\z=8\end{matrix}\right.\)

Vậy \(x=4;y=6;z=8\)

Bài 2:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{2bz-3cy}{a}=\dfrac{3cx-az}{2b}=\dfrac{ay-2bx}{3c}=\dfrac{2abz-3acy+6bcx-2baz+3cay-6bcx}{a^2+4b^2+9c^2}\)

\(\Rightarrow\left\{{}\begin{matrix}2bz-3cy=0\Rightarrow2bz=3cy\Rightarrow\dfrac{y}{2b}=\dfrac{z}{3c}\\3cx-az=0\Rightarrow3cx=az\Rightarrow\dfrac{x}{a}=\dfrac{z}{3c}\end{matrix}\right.\)

\(\Rightarrow\dfrac{x}{a}=\dfrac{y}{2b}=\dfrac{z}{3c}\left(đpcm\right)\)

Vậy \(\dfrac{x}{a}=\dfrac{y}{2b}=\dfrac{z}{3c}\)

28 tháng 12 2018

4/ \(\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}\\\dfrac{y}{5}=\dfrac{z}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{y}{20}\\\dfrac{y}{20}=\dfrac{z}{24}\end{matrix}\right.\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}=k\) (đặt k)

Suy ra \(x=15k;y=20k;z=24k\)

Thay vào,ta có:

\(M=\dfrac{2.15k+3.20k+4.24k}{3.15k+4.20k+5.24k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)

28 tháng 12 2018

3. \(b^2=ac\Rightarrow\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a^2+ac}{ac+c^2}=\dfrac{a\left(a+c\right)}{c\left(a+c\right)}=\dfrac{a}{c}^{\left(đpcm\right)}\)

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 1:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)

Khi đó: \(\left\{\begin{matrix} \frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b(2k+5)}{b(3k-4)}=\frac{2k+5}{3k-4}\\ \frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d(2k+5)}{d(3k-4)}=\frac{2k+5}{3k-4}\end{matrix}\right.\)

\(\Rightarrow \frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 2:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)

Khi đó: \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{(bk)^2+b^2}{(dk)^2+d^2}=\frac{b^2(k^2+1)}{d^2(k^2+1)}=\frac{b^2}{d^2}\)

Do đó: \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}(=\frac{b^2}{d^2})\) . Ta có đpcm.

2 tháng 8 2018

xem lại đề nha

3 tháng 8 2018

đề bị sai lỗi chính tả kìa