K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2018

Bài 1:

a)  \(B=\sqrt{1-4x+4x^2}\)

         \(=\sqrt{\left(1-2x\right)^2}\)

         \(=\left|1-2x\right|\)

Nếu  \(x\le\frac{1}{2}\)thì:  \(B=1-2x\)

Nếu  \(x>\frac{1}{2}\)thì:  \(B=2x-1\)

b)  Tại \(x=-7\)thì:  \(B=1-2.\left(-7\right)=15\)

12 tháng 7 2018

Bài 2:

\(\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{3}\right)^2+2.\sqrt{3}.2+2^2}+\sqrt{2^2-2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}\)

\(=\sqrt{\left(\sqrt{3}+2\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=\sqrt{3}+2+2-\sqrt{3}=4\) (đpcm)

2 tháng 7 2019

Lần sau bạn gõ căn ra nhé, nhìn thế này hơi khó đấy :>

Tìm x:

\(a.x-\sqrt{x}=0\left(ĐK:x\ge0\right)\\ \Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

b. Đề hơi sai sai nên mk chưa làm ra :<

\(c.x-2\sqrt{x}+1=0\left(ĐK:x\ge0\right)\\ \Leftrightarrow\left(\sqrt{x}-1\right)^2=0\Leftrightarrow\sqrt{x}-1=0\Leftrightarrow x=1\)

\(d.\sqrt{4x^2-4x+1}=3\\ \Leftrightarrow\sqrt{\left(2x\right)^2-2\cdot2x\cdot1+1}=3\\ \Leftrightarrow\sqrt{\left(2x-1\right)^2}=3\\ \Leftrightarrow\left|2x-1\right|=3\left(1\right)\)

+) T/h 1: \(x\ge\frac{1}{2}thì\left(1\right)\Leftrightarrow2x-1=3\Leftrightarrow2x=4\Leftrightarrow x=2\)

+) T/h 2: \(x< \frac{1}{2}thì\left(1\right)\Leftrightarrow1-2x=3\Leftrightarrow-2x=2\Leftrightarrow x=-1\)

Vậy......................

\(e.\sqrt{x^2-6x+9}=5\Leftrightarrow\sqrt{\left(x-3\right)^2}=5\Leftrightarrow\left|x-3\right|=5\left(2\right)\)

+) T/h 1: \(x\ge3thì\left(2\right)\Leftrightarrow x-3=5\Leftrightarrow x=8\)

+) T/h 2: \(x< 3thì\left(2\right)\Leftrightarrow3-x=5\Leftrightarrow x=-2\)

Vậy ..........................

2 tháng 7 2019

Bài 3

\(a.\) Mình hiểu đề thế này, có gì sai cmt cho mk biết nha :>

\(\sqrt{\frac{5-4x}{3}}\) có nghĩa khi \(\sqrt{5-4x}\ge0\Leftrightarrow5-4x\ge0\Leftrightarrow x\le\frac{5}{4}\)

\(b.\sqrt{2x^2+1}\)

\(x^2\ge0\Leftrightarrow2x^2+1\ge1>0\forall x\)

Vậy biểu thức trên luôn có nghĩa với mọi giá trị của x

\(c.\sqrt{\frac{x-1}{2}}\) có nghĩa khi \(x-1\ge0\Leftrightarrow x\ge1\)

\(d.\frac{x-1}{x-2}-1\) có nghĩa khi \(x-2\ne0\Leftrightarrow x\ne2\)