K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2018

Bài 1 :
A B C H 12 10

Ta có : \(\Delta ABC\) cân tại A (gt)

Mà có : AH là đường cao trong tam giác cân

=> AM đồng thời là đường trung trực trong tam giác cân

=> \(BH=HC\) (tính chất đường trung trực)

Nên có : \(BH=\dfrac{1}{2}BC=\dfrac{1}{2}.10=5\left(cm\right)\)

Xét \(\Delta ABH\) vuông tại H có :

\(AH^2=BH^2+AB^2\) (Định lí PITAGO)

=> \(AH^2=5^2+12^2\)

=> \(AH^2=169\)

=> \(AH=\sqrt{169}=13\left(cm\right)\)

12 tháng 1 2018

Bài 3 :

A B C 16 13 12

Xét \(\Delta AHC\) vuông tại H có :

\(AC^2=AH^2+HC^2\)

=> \(AC^2=12^2+16^2\)

=> \(AC^2=400\)

=> \(AC=\sqrt{400}=20\)(cm)

Xét \(\Delta AHB\) vuông tại H có :

\(BH^2=AB^2-AH^2\)

=> \(BH^2=13^2-12^2\)

=> \(BH^2=25\)

=> \(BH=\sqrt{25}=5\left(cm\right)\)

Nên ta có : \(BC=BH+HC=5+16=21\left(cm\right)\)

17 tháng 1 2019

bài 1 : AH = \(\sqrt{119}\)cm
bài 2 : BN = \(\sqrt{49.54}\)cm

17 tháng 1 2019

* hình tự vẽ

1/

Xét tam giác ABC: tam giác ABC là tam giác cân(gt) mà AH là đường cao(vì AH\(\perp\)BC)=> AH cũng là đường trung tuyến=> BH=HC

Ta có: BC=HB+HC, mà HB=HC(cmt)=> HB=HC=\(\frac{BC}{2}\)=> HB=HC= 5cm

Xét tam giác ACH, theo định lý Py ta go, có:

AH^2+ HC^2=AC^2

=> AH^2+ 5^2= 12^2

=> AH^2= 144-25

=> AH^2= 119=> AH= căn 119cm

2/ Xét tam giác BCA, theo định lý Py ta go, có:

BA^2+ AC^2= BC^2=> 12^2+5^2=BC^2

=> 144+25= BC^2=> BC^2= 169=>BC=13cm

Mà M là trung điểm BC(gt)=> MB=MC nên ta có BC=MB+MC=> MB=MC=\(\frac{BC}{2}\)=> MB=MC=6,5

Xét tam giác BMN, theo định lý Py ta go, có:

BN^2+NM^2= BM^2

=> BN^2+2,7^2=6,5^2=> BN^2 = 42,25-7,29=> BM^2= 34,96=> BM= căn 34,96cm

1 tháng 4 2020

Xét tam giác BAH

  Có B+BAH=900(vì tam giác BAH vuông tại H)

        500+BAH=900

       =>BAH=900-500

       =>BAH=400

Xét tam giác HAC

   Có C+HAC=900(Tam giác HAC vuông tại H)

         400+HAC= 900

         HAC=900-400

         HAC=500

B)Xét tam giác ABH

     Có AB2 = HB2+AH2(Theo định lý Pi-ta-go)

           AB2=32+42     

           AB2=25=52

           AB=5

     Xét tam giác CAH

        Có AC2=AH2+HC2 (Theo định lý Pi-ta-go)

                     AC2=42+42=32=       

20 tháng 12 2020

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được: 

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow AB^2=9^2+12^2=225\)

hay AB=15cm

Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được: 

\(AC^2=AH^2+HC^2\)

\(\Leftrightarrow AC^2=12^2+16^2=400\)

hay AC=20cm

Vậy: AB=15cm; AC=20cm

Ta có: BH+CH=BC(H nằm giữa B và C)

hay BC=9+16=25cm

Ta có: \(AB^2+AC^2=15^2+20^2=625\)

\(BC^2=25^2=625\)

Do đó: \(BC^2=AB^2+AC^2\)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)

7 tháng 6 2021

Câu c. lên lớp 8 thì em có thể dùng đường trung bình dễ hơn nhiều nhé.

Không có mô tả.

7 tháng 6 2021

tiếp câu b. 

12 tháng 1 2018

Tam giác AHC vuông tại H nên : AC^2 = AH^2 + CH^2 = 12^2 + 16^2 = 400

=> AC = 20 (cm)

Tam giác AHB vuông tại H nên : AB^2 = AH^2 + BH^2

=> BH^2 = AB^2 - AH^2 = 13^2 - 12^2 = 25

=> BH = 5 (cm)

=> BC = BH + HC = 5 + 16 = 21 (cm)

Tk mk nha

12 tháng 1 2018

bài này ta sử dụng định lí Pytago là được mà 

13 tháng 1 2022

TK

undefined

13 tháng 1 2022

cảm ơn bn nhìu nha