Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) Đẳng thức điều kiện tương đương với \(\left(1+a\right)\left(1+b\right)\left(1+c\right)=1\Rightarrow1+a,1+b,1+c\ne0\)
Ta có: \(S=\frac{1}{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}+\frac{1}{1+\left(1+b\right)+\left(1+b\right)\left(1+c\right)}\)\(+\frac{1}{1+\left(1+c\right)+\left(1+c\right)\left(1+a\right)}\)
\(=\frac{1}{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}+\frac{1+a}{\left(1+a\right)\left[1+\left(1+b\right)+\left(1+b\right)\left(1+c\right)\right]}\)\(+\frac{\left(1+a\right)\left(1+b\right)}{\left(1+a\right)\left(1+b\right)\text{[}1+\left(1+c\right)+\left(1+c\right)\left(1+a\right)\text{]}}=\frac{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}=1\)
Câu 1 :
a, Đáp án nên nó đúng nhoa
b, MinA = 2016,75 .
Câu 2 :
a, - \(\left[{}\begin{matrix}x=\pm1\\x=3\end{matrix}\right.\)
b, - Với m bằng - 3 .
Câu 3 :
a, \(\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)
b, Hỏi tí vế 2 là bằng 4 hay - 4 .
\(M=\left(\frac{x-1+\sqrt{xy}+\sqrt{y}}{\sqrt{x}+1}+1\right)\left(\sqrt{x}-\sqrt{y}\right)\)
\(=\left(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+\sqrt{y}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}+1\right)\left(\sqrt{x}-\sqrt{y}\right)\)
\(=\left(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+\sqrt{y}-1\right)}{\sqrt{x}+1}+1\right)\left(\sqrt{x}-\sqrt{y}\right)\)
\(=\left(\sqrt{x}+\sqrt{y}-1+1\right)\left(\sqrt{x}-\sqrt{y}\right)=x-y\)
Câu 2:
a/ Bạn tự giải
b/ \(\Delta'=\left(m-1\right)^2-m+5=m^2-3m+6=\left(m-\frac{3}{2}\right)^2+\frac{15}{4}>0\)
Pt luôn có 2 nghiệm phân biệt với mọi m
Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m-5\end{matrix}\right.\)
\(P=x_1^2+x_2^2+2x_1x_2-2x_1x_2\)
\(=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=4\left(m-1\right)^2-2\left(m-5\right)\)
\(=4m^2-10m+14\)
\(=\left(2m-\frac{5}{2}\right)^2+\frac{31}{4}\ge\frac{31}{4}\)
\(\Rightarrow P_{min}=\frac{31}{4}\) khi \(2m-\frac{5}{2}=0\Leftrightarrow m=\frac{5}{4}\)
Câu 2:
\(a,Đkxđ:x\ge0;x\ne9;x\ne4\)
\(b,P=\frac{2\sqrt{x}-9+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)-\left(x-9\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{2\sqrt{x}-9+2x-4\sqrt{x}+\sqrt{x}-2-x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
Ta co:\(\Sigma\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}=\Sigma\frac{\left(y+\frac{1}{z}\right)^2}{z+\frac{1}{x}}\ge\frac{\left(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}{x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}=x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)Ta lai co:
\(\Sigma x+\Sigma\frac{1}{x}=\Sigma\left(x+\frac{1}{4x}\right)+\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3+\frac{3}{4}.\frac{9}{x+y+z}\ge3+\frac{3}{4}.\frac{9}{\frac{3}{2}}=\frac{15}{2}\)
Dau '=' xay ra khi \(x=y=z=\frac{1}{2}\)
Vay \(P_{min}=\frac{15}{2}\)khi \(x=y=z=\frac{1}{2}\)
mấy câu trên bn giải đc k ak ? Giải giúp mik vs :3