K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

Lời giải:
$B=(a^4+b^4-2a^2b^2)+c^4-2c^2(a^2-b^2)-4b^2c^2$

$=(a^2-b^2)^2+c^4-2c^2(a^2-b^2)-(2bc)^2$

$=(a^2-b^2-c^2)^2-(2bc)^2$
$=(a^2-b^2-c^2-2bc)(a^2-b^2-c^2+2bc)$

$=[a^2-(b+c)^2][a^2-(b-c)^2]$

$=(a-b-c)(a+b+c)(a-b+c)(a+b-c)$

4 tháng 3 2020

\(x^5-4x^3-5x\)

\(=x\left(x^4-4x^2-5\right)\)

\(=x\left(x^4-5x^2+x^2-5\right)\)

\(=x\left[x^2\left(x^2-5\right)+\left(x^2-5\right)\right]\)

\(=x\left(x^2+1\right)\left(x+\sqrt{5}\right)\left(x-\sqrt{5}\right)\)

4 tháng 3 2020

a/

\(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2.\)

=>\(a^4+b^4+c^4-2\left(ab\right)^2-2\left(bc\right)^2-2\left(ac\right)^2\) 

=>\(a^4+b^4+c^4-2\left(ab\right)^2-2\left(bc\right)^2+2\left(ac\right)^2-4\left(ca\right)^2\)

áp dụng hằng đẳng thức  \(a^2-b^2-c^2=a^4+b^4+c^4-2\left(ab\right)^2-2\left(bc\right)^2+2\left(ac\right)^2\) ta đc

\(\left(a^2-b^2+c^2\right)-4\left(ac\right)^2\)

=> \(\left(a^2-b^2+c^2-2ac\right)\left(a^2-b^2+c^2+2ac\right)\)

14 tháng 9 2016

(a2+b2+c2)2

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

20 tháng 1 2016

\(\left(a-b-c\right)^2\)

31 tháng 7 2017

a,x^4+2x^3-4x-4

=(x^3+2x^3)-(4x+4)

=x^3(x+2)-4(x+2)

=(x^3-4)(x+2)

31 tháng 7 2017

\(X^4+2X^3-4X-4\)

\(=\left(X^2\right)^2+2X^3-4X-2^2\)

\(=\left[\left(X^2\right)^2-2^2\right]+\left[2X^3-4X\right]\)

\(=\left(X^2+2\right)\left(X^2-2\right)+2X\left(X^2-2\right)\)

\(=\left(X^2-2\right)\left(X^2+2+2X\right)\)

26 tháng 5 2017

1. (a2+b2+ab)2-a2b2-b2c2-c2a2

=a4+b4+a2b2+2(a2b2+ab3+a3b)-a2b2-b2c2-c2a2

=a4+b4+2a2b2+2ab3+2a3b-b2c2-c2a2

=(a2+b2)2+2ab(a2+b2)-c2(a2+b2)

=(a2+b2)[(a+b)2-c2]

=(a2+b2)(a+b+c)(a+b-c)

2. a4+b4+c4-2a2b2-2b2c2-2a2c2=(a2-b2-c2)2

3. a(b3-c3)+b(c3-a3)+c(a3-b3)

=ab3-ac3+bc3-ba3+ca3-cb3

=a3(c-b)+b3(a-c)+c3(b-a)

=a3(c-b)-b3(c-a)+c3(b-a)

=a3(c-b)-b3(c-b+b-a)+c3(b-a)

=a3(c-b)-b3(c-b)-b3(b-a)+c3(b-a)

=(c-b)(a-b)(a2+ab+b2)-(b-a)(b-c)(b2+bc+c2)

=(a-b)(c-b)(a2+ab+2b2+bc+c2)

4. a6-a4+2a3+2a2=a4(a+1)(a-1)+2a2(a+1)=(a+1)(a5-a4+2a2)=a2(a+1)(a3-a2+2)

5. (a+b)3-(a-b)3=(a+b-a+b)[(a+b)2+(a+b)(a-b)+(a-b)2]

=2b(3a2+b2)

6. x3-3x2+3x-1-y3=(x-1)3-y3=(x-1-y)[(x-1)2+(x-1)y+y2]

=(x-y-1)(x2+y2+xy-2x-y+1)

7. xm+4+xm+3-x-1=xm+3(x+1)-(x+1)=(x+1)(xm+3-1)

(Đúng nhớ like nhá !)

26 tháng 5 2017

Minh Hải,Lê Thiên Anh,Nguyễn Huy Tú,Ace Legona,...giúp mk vs mai mk đi hk rùi

22 tháng 10 2021

a) \(\left(2a+b\right)^2-\left(2b+a\right)^2\)

\(=\left(2a+b+2b+a\right)\left(2a+b-2b-a\right)\)

\(=3\left(a+b\right)\left(a-b\right)\)

22 tháng 10 2021

b) \(x^4+2x^2y+y^2\)

\(=\left(x^2+y\right)^2\)

14 tháng 7 2019

\(a,x^2y^2+1-x^2-y^2\)

\(=x^2y^2-x^2+1-y^2\)

\(=x^2\left(y^2-1\right)+\left(1-y^2\right)\)

\(=x^2\left(y^2-1\right)-\left(y^2-1\right)\)

\(=\left(y^2-1\right)\left(x^2-1\right)\)

\(=\left(y-1\right)\left(y+1\right)\left(x+1\right)\left(x-1\right)\)

14 tháng 7 2019

\(b,x^4-x^2+2x-1\)

\(=x^{2^2}-\left(x^2-2x+1\right)\)

\(=x^{2^2}-\left(x-1\right)^2\)

\(=\left(x^2+x-1\right)\left(x^2-x+1\right)\)

9 tháng 10 2020

Câu 1: \(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2=\left(a^4+b^4+c^4-2a^2b^2-2c^2a^2+2b^2c^2\right)-4b^2c^2=\left(a^2-b^2-c^2\right)^2-4b^2c^2=\left(a^2-b^2-c^2-2bc\right)\left(a^2-b^2-c^2+2bc\right)=\left[a^2-\left(b+c\right)^2\right]\left[a^2-\left(b-c\right)^2\right]=\left(a-b-c\right)\left(a+b+c\right)\left(a-b+c\right)\left(a+b-c\right)\)Câu 2: \(a^3+a^2-ab^2-b^2=a^2\left(a+1\right)-b^2\left(a+1\right)=\left(a^2-b^2\right)\left(a+1\right)=\left(a+b\right)\left(a-b\right)\left(a+1\right)\)

Câu 3: \(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)=a\left(b^3-c^3\right)-b\left[\left(b^3-c^3\right)+\left(a^3-b^3\right)\right]+c\left(a^3-b^3\right)=\left(a-b\right)\left(b-c\right)\left(b^2+bc+c^2\right)-\left(b-c\right)\left(a-b\right)\left(a^2+ab+b^2\right)=\left(a-b\right)\left(b-c\right)\left[b\left(c-a\right)+\left(c-a\right)\left(c+a\right)\right]=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)

9 tháng 10 2020

Câu 1.

a4 + b4 + c4 - 2a2b2 - 2b2c2 - 2a2c2 

= [ ( a4 - 2a2b2 + b4 ) - 2a2c2 + 2b2c2  + c4 ] - 4b2c2

= [ ( a2 - b2 )2 - 2( a2 - b2 )c2 + ( c2 )2 ] - ( 2bc )2

= ( a2 - b2 - c2 ) - ( 2bc )2

= ( a2 - b2 - c2 - 2bc )( a2 - b2 - c2 + 2bc )

= [ a2 - ( b2 + 2bc + c2 ) ][ a2 - ( b2 - 2bc + c2 ) ]

= [ a2 - ( b + c )2 ][ a2 - ( b - c )2 ]

= ( a - b - c )( a + b + c )( a - b + c )( a + b - c )

Câu 2.

a3 + a2 - ab2 - b2

= a2( a + 1 ) - b2( a + 1 )

= ( a + 1 )( a2 - b2 )

= ( a + 1 )( a - b )( a + b )