K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 11 2019

a/ Đẳng thức bạn ghi nhầm rồi, đây là công thức rất quen thuộc:

\(1^3+2^3+...+n^3=\frac{n^2\left(n+1\right)^2}{4}\)

Với \(n=1;2\) ta thấy đúng

Giả sử đẳng thức cũng đúng với \(n=k\) hay:

\(1^3+2^3+...+k^3=\frac{n^2\left(n+1\right)^2}{4}\)

Ta cần chứng minh nó cũng đúng với \(n=k+1\) hay:

\(1^3+2^3+...+k^3+\left(k+1\right)^3=\frac{\left(k+1\right)^2\left(k+2\right)^2}{4}\)

Thật vậy, ta có:

\(1^3+2^3+...+k^3+\left(k+1\right)^3=\frac{k^2\left(k+1\right)^2}{4}+\left(k+1\right)^3\)

\(=\left(k+1\right)^2\left[\frac{k^2}{4}+k+1\right]=\left(k+1\right)^2\left(\frac{k^2+4k+4}{4}\right)\)

\(=\frac{\left(k+1\right)^2\left(k+2\right)^2}{4}\) (đpcm)

NV
18 tháng 11 2019

b/

Ta thấy đẳng thức đúng với \(n=1;2\)

Giả sử nó cũng đúng với \(n=k\) hay:

\(1+3+...+\left(2k-1\right)=k^2\)

Ta cần chứng minh nó đúng với \(n=k+1\) hay:

\(1+3+...+\left(2k-1\right)+\left(2k+1\right)=\left(k+1\right)^2\)

Thật vậy, ta có:

\(1+3+...+\left(2k-1\right)+\left(2k+1\right)\)

\(=k^2+2k+1=\left(k+1\right)^2\) (đpcm)

NV
17 tháng 2 2020

- Với \(n=1\) đúng

- Giả sử đúng với \(n=k\) hay: \(1^2+...+\left(2k-1\right)^2=\frac{k\left(4k^2-1\right)}{3}=\frac{k\left(2k-1\right)\left(2k+1\right)}{3}\)

Ta cần chứng minh nó đúng với \(n=k+1\) hay:

\(1^2+...+\left(2k-1\right)^2+\left(2k+1\right)^2=\frac{\left(k+1\right)\left[4\left(k+1\right)^2-1\right]}{3}=\frac{\left(k+1\right)\left(2k+1\right)\left(2k+3\right)}{3}\)

Thật vậy:

\(1^2+...+\left(2k-1\right)^2+\left(2k+1\right)^2=\frac{k\left(2k-1\right)\left(2k+1\right)}{3}+\left(2k+1\right)^2\)

\(=\left(2k+1\right)\left[\frac{k\left(2k-1\right)}{3}+2k+1\right]=\frac{\left(2k+1\right)\left(2k^2+5k+3\right)}{3}\)

\(=\frac{\left(2k+1\right)\left(k+1\right)\left(2k+3\right)}{3}=\frac{\left(k+1\right)\left(2k+1\right)\left(2k+3\right)}{3}\) (đpcm)

Câu 1 : Kết quả của giới hạn lim \(\frac{-3n^2+5n+1}{2n^2-n+3}\) là : A. \(\frac{3}{2}\) B. \(+\infty\) C. \(-\frac{3}{2}\) D. 0 Câu 2 : Gía trị của giới hạn lim \(\frac{\sqrt{9n^2-n}-\sqrt{n+2}}{3n-2}\) là : A. 1 B. 0 C. 3 D. \(+\infty\) Câu 3 : Biết rằng lim...
Đọc tiếp

Câu 1 : Kết quả của giới hạn lim \(\frac{-3n^2+5n+1}{2n^2-n+3}\) là :

A. \(\frac{3}{2}\) B. \(+\infty\) C. \(-\frac{3}{2}\) D. 0

Câu 2 : Gía trị của giới hạn lim \(\frac{\sqrt{9n^2-n}-\sqrt{n+2}}{3n-2}\) là :

A. 1 B. 0 C. 3 D. \(+\infty\)

Câu 3 : Biết rằng lim \(\left(\frac{\left(\sqrt{5}\right)^n-2^{n+1}+1}{5.2^n+\left(\sqrt{5}\right)^{n+1}-3}+\frac{2n^2+3}{n^2-1}\right)=\frac{a\sqrt{5}}{b}+c\) với a , b , c \(\in\) Z . Tính giá trị của biểu thức S = a2 + b2 + c2

A. S = 26 B. S = 30 C. S = 21 D. S = 31

Câu 4 : Cho un = \(\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{\left(2n-1\right)\left(2n+1\right)}\right)\) thì lim \(\left(u_n-\frac{1}{2}\right)\) bằng

A. 0 B. -1 C. 1 D. \(\frac{1}{2}\)

Câu 5 : Tìm giá trị thực của tham số m để hàm số y = f (x ) = \(\left\{{}\begin{matrix}\frac{x^2-x-2}{x-2}khix\ne2\\mkhix=2\end{matrix}\right.\) liên tục tại x = 2

A. m = 3 B. m = 1 C. m = 2 D. m = 0

Câu 6 : Cho hàm số f(x) = \(\left\{{}\begin{matrix}\frac{x^2+4x+3}{x+3},khix>-3\\2a,khix\le-3\end{matrix}\right.\) . giá trị của để f ( x ) liên tục tại x0 = -3 là

A. 1 .B. 2 C. -1 D. -2

Câu 7 : Hàm số y = f (x) = \(\frac{x^3+xcosx+sinx}{2sinx+3}\) liên tục trên

A. [-1;1] B. [1;5] C. \(\left(-\frac{3}{2};+\infty\right)\) D. R

Câu 8 : Kết quả của giới hạn \(lim_{x\rightarrow+\infty}\left(\sqrt{x^2+x}-\sqrt[3]{x^3-x^2}\right)\) là :

A. \(+\infty\) B. \(-\infty\) C. 0 D. \(\frac{5}{6}\)

Câu 9 : Với a là số thực khác 0 , \(lim_{x\rightarrow a}\frac{x^2-\left(a+1\right)x+a}{x^2-a^2}\) bằng :

A. a - 1 B. a + 1 C. \(\frac{a-1}{2a}\) D. \(\frac{a+1}{2a}\)

Câu 10 : giá trị của \(lim_{x\rightarrow+\infty}\frac{\sqrt{2+2x}-\sqrt{2x^2+2}}{2x}\) bằng

A. \(-\infty\) B. \(\sqrt{2}-\sqrt{3}\) C. \(+\infty\) D. \(-\sqrt{3}\)

Câu 11 : Kết quả của giới hạn \(lim_{x\rightarrow1^+}\frac{-2x+1}{x-1}\)là :

A. \(\frac{2}{3}\) B. \(-\infty\) C. \(\frac{1}{3}\) D. \(+\infty\)

Câu 12 : Đạo hàm của hàm số y = cot x là hàm số :

A. \(\frac{1}{sin^2x}\) B. \(-\frac{1}{sin^2x}\) C. \(\frac{1}{cos^2x}\) D. \(-\frac{1}{cos^2x}\)

Câu 13 : Đạo hàm của hàm số y = \(\left(x^3-2x^2\right)^{2020}\) là :

A. y' = \(2020\left(x^3-2x^2\right)^{2021}\)

B. y' = \(2020\left(x^3-2x^2\right)^{2019}\left(3x^2-4x\right)\)

C. y' = \(2019\left(x^3-2x^2\right)^{2020}\left(3x^2-4x\right)\)

D. y' = \(2019\left(x^3-2x^2\right)\left(3x^2-2x\right)\)

Câu 14 : Đạo hàm của hàm số y = \(\sqrt{4x^2+3x+1}\) là hàm số nào sau đây ?

A. y = \(\frac{1}{2\sqrt{4x^2+3x+1}}\)

B. y = \(\frac{8x+3}{2\sqrt{4x^2+3x+1}}\)

C. y = 12x + 3

D. y = \(\frac{8x+3}{\sqrt{4x^2+3x+1}}\)

Câu 15 : Tính đạo hàm của hàm số y = (x - 5)4

A. y' = ( x - 5 )3 B. y' = -20 (x-5)3 C. y' = -5(x-5)3 D. y' = 4(x-5)3

Câu 16 : Tính đạo hàm của hàm số y = \(\sqrt{cos2x}\)

A. \(y^'=-\frac{sin2x}{2\sqrt{cos2x}}\)

B. y' = \(\frac{sin2x}{\sqrt{cos2x}}\)

C. y' = \(\frac{sin2x}{2\sqrt{cos2x}}\)

D. y' = \(-\frac{sin2x}{\sqrt{cos2x}}\)

Câu 17 : Đạo hàm của hàm số y = \(x^4+\frac{1}{x}-\sqrt{x}\) là :

A. y' = \(4x^3-\frac{1}{x^2}-\frac{1}{2\sqrt{x}}\)

B. y' = \(4x^3+\frac{1}{x^2}+\frac{1}{2\sqrt{x}}\)

C. y' = \(4x^3+\frac{1}{x^2}-\frac{1}{2\sqrt{x}}\)

D. y' = \(4x^3-\frac{1}{x^2}+\frac{1}{2\sqrt{x}}\)

Câu 18 : Tiếp tuyến với đồ thị y = x3 - x2 tại điểm có hoành độ x0 = -2 có phương trình là :

A. y = 20x + 14 B. y = 20x + 24 C. y = 16x + 20 D. y = 16x - 56

Câu 19 : Tính đạo hàm cấp hai của hàm số y = \(\frac{1}{x}\)

A. y'' = \(-\frac{2}{x^3}\)

B. y'' = \(-\frac{1}{x^2}\)

C. y'' = \(\frac{1}{x^2}\)

D. y'' = \(\frac{2}{x^3}\)

Câu 20 : Hàm số y = cot x có đạo hàm là :

A. \(y^'=-\frac{1}{sin^2x}\)

B. y' = - tan x

C. y' = \(-\frac{1}{cos^2x}\)

D. y' = 1 + cot2x

Câu 21 : Hàm số y = \(x-\frac{4}{x}\) có đạo hàm bằng

A. \(\frac{-x^2+4}{x^2}\)

B. \(\frac{x^2+4}{x^2}\)

C. \(\frac{-x^2-4}{x^2}\)

D. \(\frac{x^2-4}{x^2}\)

Câu 22 : Trong các dãy số (un) sau , dãy số nào có giới hạn bằng \(+\infty\) ?

A. \(u_n=\frac{1}{n}\)

B. \(u_n=\left(\frac{2}{3}\right)^n\)

C. \(u_n=\left(-\frac{1}{2}\right)^n\)

D. \(u_n=3^n\)

5
NV
10 tháng 6 2020

16.

\(y'=\frac{\left(cos2x\right)'}{2\sqrt{cos2x}}=\frac{-2sin2x}{2\sqrt{cos2x}}=-\frac{sin2x}{\sqrt{cos2x}}\)

17.

\(y'=4x^3-\frac{1}{x^2}-\frac{1}{2\sqrt{x}}\)

18.

\(y'=3x^2-2x\)

\(y'\left(-2\right)=16;y\left(-2\right)=-12\)

Pttt: \(y=16\left(x+2\right)-12\Leftrightarrow y=16x+20\)

19.

\(y'=-\frac{1}{x^2}=-x^{-2}\)

\(y''=2x^{-3}=\frac{2}{x^3}\)

20.

\(\left(cotx\right)'=-\frac{1}{sin^2x}\)

21.

\(y'=1+\frac{4}{x^2}=\frac{x^2+4}{x^2}\)

22.

\(lim\left(3^n\right)=+\infty\)

NV
10 tháng 6 2020

11.

\(\lim\limits_{x\rightarrow1^+}\frac{-2x+1}{x-1}=\frac{-1}{0}=-\infty\)

12.

\(y=cotx\Rightarrow y'=-\frac{1}{sin^2x}\)

13.

\(y'=2020\left(x^3-2x^2\right)^{2019}.\left(x^3-2x^2\right)'=2020\left(x^3-2x^2\right)^{2019}\left(3x^2-4x\right)\)

14.

\(y'=\frac{\left(4x^2+3x+1\right)'}{2\sqrt{4x^2+3x+1}}=\frac{8x+3}{2\sqrt{4x^2+3x+1}}\)

15.

\(y'=4\left(x-5\right)^3\)

NV
6 tháng 11 2019

a/ \(\frac{A^4_n}{A_{n+1}^3-C_n^{n-4}}=\frac{24}{23}\Rightarrow n=5\)

Khai triển \(\left(2-3x^2+x^3\right)^5\)

\(\left\{{}\begin{matrix}k_0+k_2+k_3=5\\2k_2+3k_3=9\end{matrix}\right.\) \(\Rightarrow\left(k_0;k_2;k_3\right)=\left(1;3;1\right);\left(2;0;3\right)\)

Hệ số của số hạng chứa \(x^9\):

\(\frac{5!}{1!.3!.1!}.2^1.\left(-3\right)^3+\frac{5!}{2!.3!}.2^2.\left(-3\right)^0=-1040\)

b/ SHTQ của khai triển: \(\left(1+2x\right)^n\) là: \(C_n^k2^kx^k\)

\(\Rightarrow\) Hệ số của \(x^3\) trong khai triển tổng quát là \(C_n^32^3\)

\(\Rightarrow\) Hệ số của \(x^3\) trong khai triển của \(f\left(x\right)\): \(2^3.\sum\limits^{22}_{n=3}C_n^3\)

Tính tổng \(C_3^3+C_4^3+C_5^3+...+C_{22}^3\)

\(=C_4^4+C_4^3+C_5^3+...+C_{22}^3\)

\(=C_5^4+C_5^3+...+C_{22}^3\)

\(=C_6^4+C_6^3+...+C_{22}^3=...=C_{23}^4\)

Vậy \(2^3\sum\limits^{22}_{n=3}C_n^3=2^3.C_{23}^4\)

22 tháng 1 2020

Bài 1. Ta có:

\(\begin{array}{l} S = \sum\limits_{k = 1}^n {{x^{2k}}} + \sum\limits_{k = 1}^n {\dfrac{1}{{{x^{2k}}}} + 2n} \\ = {x^2}\dfrac{{1 - {x^{2n}}}}{{1 - {x^2}}} + \dfrac{1}{{{x^2}}}.\dfrac{{1 - \dfrac{1}{{{x^{2n}}}}}}{{1 - \dfrac{1}{{{x^2}}}}} + 2n\\ = \dfrac{{\left( {1 - {x^{2n}}} \right)\left( {{x^{2n + 2}} - 1} \right)}}{{\left( {1 - {x^2}} \right){x^{2n}}}} + 2n \end{array}\)

Bài 2.

Ta có:

\(\begin{array}{l} T = \dfrac{1}{2} + \dfrac{3}{{{2^2}}} + \dfrac{5}{{{2^3}}} + ... + \dfrac{{2n - 1}}{{{2^n}}}\left( 1 \right)\\ \dfrac{1}{2}T = \dfrac{1}{{{2^2}}} + \dfrac{3}{{{2^3}}} + \dfrac{5}{{{2^4}}} + ... + \dfrac{{2n - 3}}{{{2^n}}} + \dfrac{{2n - 1}}{{{2^{n + 1}}}}\left( 2 \right) \end{array}\)

\((1)-(2)\)\(\Rightarrow \dfrac{1}{2}T = \dfrac{1}{2} + \dfrac{2}{{{2^2}}} + \dfrac{2}{{{2^3}}} + ... + \dfrac{2}{{{2^n}}} - \dfrac{{2n - 1}}{{{2^{n + 1}}}}\)

\(\begin{array}{l} \Rightarrow T = 2\left[ {\dfrac{1}{2} + \dfrac{1}{2}\dfrac{{1 - {{\left( {\dfrac{1}{2}} \right)}^{n - 1}}}}{{1 - \dfrac{1}{2}}} - \dfrac{{2n - 1}}{{{2^{n + 1}}}}} \right]\\ = 1 + \dfrac{{{2^{n - 1}} - 1}}{{{2^{n - 2}}}} - \dfrac{{2n - 1}}{{{2^n}}} \end{array}\)

NV
20 tháng 11 2019

\(S=x^2+\frac{1}{x^2}+2+x^4+\frac{1}{x^4}+2+...+x^{2n}+\frac{1}{x^{2n}}+2\)

\(=\left(x^2+x^4+...+x^{2n}\right)+\left(\frac{1}{x^2}+\frac{1}{x^4}+...+\frac{1}{x^{2n}}\right)+2n\)

\(=x^2.\frac{\left(x^2\right)^{n-1}-1}{x^2-1}+\frac{1}{x^2}.\frac{\left(\frac{1}{x^2}\right)^{n-1}-1}{\frac{1}{x^2}-1}+2n\)

\(=\frac{x^{2n}-x^2}{x^2-1}+\frac{x^{2-2n}-1}{1-x^2}+2n\)

\(T=\frac{1}{2}+\frac{3}{2^2}+\frac{5}{2^3}+...+\frac{2n-3}{2^{n-1}}+\frac{2n-1}{2^n}\)

\(\Rightarrow2T=1+\frac{3}{2}+\frac{5}{2^2}+...+\frac{2n-1}{2^{n-1}}\)

\(\Rightarrow T=1+\frac{2}{2}+\frac{2}{2^2}+\frac{2}{2^3}+...+\frac{2}{2^{n-1}}-\frac{2n-1}{2^n}\)

\(T=1+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{n-2}}-\frac{2n-1}{2^n}\)

\(T=1+1.\frac{\left(\frac{1}{2}\right)^{n-2}-1}{\frac{1}{2}-1}-\frac{2n-1}{2^n}=3-\frac{1}{2^{n-1}}-\frac{2n-1}{2^n}=3-\frac{1}{2^n}-\frac{n}{2^{n-1}}\)

29 tháng 12 2016

ta có với n=1: VT=1=VP

giả sử đúng với n=k, k thuộc N*

ta cần chứng minh đúng với n=k+1

thay vào ta dduocj: [k(k+1)]2/4+(k+1)3=[(k+1)(k+2)]^2/4

=> đpcm

phương pháp quy nạp

Em học lớp 8 thôi :)) Cái này em k chắc lắm ạ, có gì sai anh chỉ nhé !

Gợi ý :

3) \(n^3+11n=n\cdot\left(n^2+11\right)=n\cdot\left(n^2-1+12\right)\)

\(=n\left(n-1\right)\left(n+1\right)+12n⋮6\)

1) \(Có:2^n-2n-1=2\left(2^{n-1}-1\right)-1>0\forall n\ge3\)

nên : \(2^n>2n+1\)

NV
12 tháng 2 2020

\(=lim\frac{n\sqrt{1+\frac{1}{n}-\frac{1}{n^2}}-n\sqrt{4-\frac{2}{n^2}}}{n\left(1+\frac{3}{n}\right)}=\frac{\sqrt{1+0+0}-\sqrt{4-0}}{1+0}=-1\)

\(=lim\frac{3\left(\frac{3}{7}\right)^n-\frac{1}{4}.\left(\frac{2}{7}\right)^n-5.\left(\frac{1}{7}\right)^n}{3+6.\left(\frac{1}{7}\right)^n}=\frac{3.0-\frac{1}{4}.0-5.0}{3+6.0}=0\)

\(=lim\frac{2n-4}{3n+\sqrt{9n^2-2n+4}}=lim\frac{2-\frac{4}{n}}{3+\sqrt{9-\frac{2}{n}+\frac{4}{n^2}}}=\frac{2}{3+\sqrt{9}}=\frac{1}{3}\)

NV
1 tháng 5 2020

\(\lim\limits\frac{3^n+4^n+3}{4^n+2^n-1}=\lim\limits\frac{\left(\frac{3}{4}\right)^n+1+3\left(\frac{1}{4}\right)^n}{1+\left(\frac{2}{4}\right)^n-\left(\frac{1}{4}\right)^n}=\frac{0+1+0}{1+0+0}=1\)

\(\lim\limits\frac{5.2^n+9.3^n}{2.2^n+3.3^n}=\lim\limits\frac{5\left(\frac{2}{3}\right)^n+9}{2.\left(\frac{2}{3}\right)^n+3}=\frac{0+9}{0+3}=3\)

\(\lim\limits\frac{4^n-7^n}{2^n+15^n}=\lim\limits\frac{\left(\frac{4}{15}\right)^n-\left(\frac{7}{15}\right)^n}{\left(\frac{2}{15}\right)^n+1}=\frac{0-0}{0+1}=0\)

\(\lim\limits\frac{6.5^n+9^n}{3.12^n+7^n}=\lim\limits\frac{6\left(\frac{5}{12}\right)^n+\left(\frac{9}{12}\right)^n}{3+\left(\frac{7}{12}\right)^n}=\frac{0+0}{3+0}=0\)

\(\lim\limits\frac{\sqrt{5}^n}{3^n+1}=\lim\limits\frac{\left(\frac{\sqrt{5}}{3}\right)^n}{1+\left(\frac{1}{3}\right)^n}=\frac{0}{1+0}=0\)

\(\lim\limits\frac{5.5^n-3.7^n}{3.10^n+36.6^n}=\lim\limits\frac{5.\left(\frac{5}{10}\right)^n-3\left(\frac{7}{10}\right)^n}{3+36\left(\frac{6}{10}\right)^n}=\frac{0-0}{3+0}=0\)