K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2016

txđ D=R

y'=-3x2+6x+3m 

y' là tam thức bậc 2 nên y'=0 có tối đa 2 nghiệm 

để hs nb/(0;\(+\infty\) ) thì y' \(\le\) 0 với mọi x \(\in\) (0;\(+\infty\) )

\(\Leftrightarrow\) -3x2 +6x+3m \(\le\) 0 với mọi x \(\in\) (0;\(+\infty\) )

\(\Leftrightarrow\) m\(\le\) x-2x với mọi x \(\in\) (0; \(+\infty\) ) 

xét hs g(x)=x-2x

g'(X) =2x-2

g'(x)=0 \(\Leftrightarrow\) x=1

 vậy m \(\le\) -1 

20 tháng 6 2016

Tại sao lại xét  g'(x)  ạ ?

4 tháng 7 2016

lớp 12 đang thi ! chị đưa cái đo lên ai mà làm !!

22 tháng 11 2016

Câu 3:

+)Vì BC vuông góc với cả SA và AB nên BC vuông góc với (SAB)

\(\Rightarrow\left(\widehat{SC,\left(SAB\right)}\right)=\widehat{BSC}=30^o\)

Ta có \(SB=\frac{BC}{tan\widehat{BSC}}=a\sqrt{3}\) , \(SA=\sqrt{SB^2-AB^2}=a\sqrt{2}\)

+)Sử dụng phương pháp tọa độ hóa

Xét hệ trục tọa độ Axyz, A là gốc tọa độ, B,D,S lầ lượt nằm trên các tia Ax, Ay, Az

\(\Rightarrow B\left(a;0;0\right),C\left(a;a;0\right),D\left(0;a;0\right),S\left(0;0;a\sqrt{2}\right)\)

\(\Rightarrow E\left(\frac{a}{2};\frac{a}{2};0\right),F\left(0;\frac{a}{2};\frac{a}{\sqrt{2}}\right)\)

Như vậy là biết tọa độ 4 điểm D,E,F,C ta có thể viết phương trình 2 đường thẳng DE, FC và tính khoảng cách theo công thức sau

\(d\left(DE;FC\right)=\frac{\left|\left[\overrightarrow{DE.}\overrightarrow{FC}\right]\overrightarrow{EC}\right|}{\left|\overrightarrow{DE.}\overrightarrow{FC}\right|}\) (không nhớ rõ lắm)

22 tháng 11 2016

Câu 5:

Gọi I là trung điểm BC, dễ thấy BC vuông góc với (AIA') (vì BC vuông góc với IA,IA')

Từ I kẻ IH vuông góc với AA' tại H

suy ra IH là đường nố vuông góc chung của BC và AA' hay IH chính là khoảng cách của 2 đường thẳng BC và AA'

Tính được IA=a và IA'=\(a\sqrt{3}\)

Lại có tam giác AIA' vuông tại I, có đường cao IH nên ta dùng hệ thức:

\(\frac{1}{IH^2}=\frac{1}{AI^2}+\frac{1}{A'I^2}\Rightarrow IH=\frac{a\sqrt{3}}{2}\)

 

7 tháng 9 2017

20

Gọi n là số con cá trên một đơn vị diện tích hồ (n>0). Khi đó:

Cân nặng của một con cá là: P(n)=480−20nP(n)=480−20n

Cân nặng của n con cá là:nP(n)=480n−20n2,n>0nP(n)=480n−20n2,n>0

Xét hàm số:f(n)=480n−20n2,n>0f(n)=480n−20n2,n>0

Ta có:

f′(n)=480−40nf′(n)=0⇔n=12f′(n)=480−40nf′(n)=0⇔n=12

Lập bảng biến thiên ta thấy số cá phải thả trên một đơn vị diện tích hồ để có thu hoạch nhiều nhất là 12 con.

7 tháng 9 2017

19 Gọi H là chân đường vuông góc kẻ từ A.
Áp dụng định lý Ta-lét cho các tam giác BAH và ABC ta được:


nên diện tích của hình chữ nhật sẽ là:

không đổi nên S phụ thuộc tích BQ.AQ mà (bđt Cauchy)
nên
Dấu bằng xra khi BQ=AQ=>M là trung điểm AH

20 tháng 7 2016

Mình thấy có phân biệt gì giữa hàm đa thức và phân thức đâu bạn.

Theo định nghĩa thì hàm đạt cực trị tại y'=0; đồng biến khi y' > 0 và nghịch biến khi y' < 0.

Cách làm bài hàm bậc 3 ở trên là chưa chính xác.

17 tháng 6 2021

Với hàm đa thức thì xét y’>=0 nhé bạn, có khác nhau đất

AH
Akai Haruma
Giáo viên
2 tháng 2 2017

Câu 22)

Bạn dùng nguyên hàm từng phần thôi

Ta có \(I=\int x(1-x)e^{-x}dx=(ax^2+bx+c)e^{-x}\)

Đặt \(\left\{\begin{matrix} u=1-x\\ dv=xe^{-x}dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=-dx\\ v=\int xe^{-x}dx\end{matrix}\right.\)

Tại $v$ cũng áp dụng nguyên hàm từng phần, suy a \(v=-xe^{-x}-e^{-x}\)

Do đó \(I=(-xe^{-x}-e^{-x})(1-x)-\int (x+1)e^{-x}dx\)

\(I=(x^2-1)e^{-x}-v-\int e^{-x}dx\)

\(I=(x^2-1)e^{-x}-(-xe^{-x}-e^{-x})-(-e^{-x})\)

\(I=e^{-x}(x^2+x+1)+c\)

Do đó \(a=b=c=1\rightarrow a+b+c=3\)

AH
Akai Haruma
Giáo viên
2 tháng 2 2017

Câu 23:

Câu này y hệt như câu 22. Bạn chỉ cần tìm $a,b,c$ sao cho

\(\int\frac{20x^2-30x+7}{\sqrt{2x-3}}dx=(ax^2+bx+c)\sqrt{2x-3}\)

Gợi ý: Đặt \(\sqrt{2x-3}=t\), ta sẽ tìm được \(\int\frac{20x^2-30x+7}{\sqrt{2x-3}}dx=(4x^2-2x+1)\sqrt{2x-3}\)

\(\Rightarrow a=4,b=-2,c=1\). Đáp án C

Câu 25:

Đạo hàm của $f(x)=\frac{1}{2x-1}$ thì nghĩa là \(f(x)=\int\frac{1}{2x-1}dx\)

\(\Leftrightarrow f(x)=\frac{1}{2}\int\frac{d(2x-1)}{2x-1}=\frac{1}{2}\ln|2x-1|+c\)

\(f(1)=1\leftrightarrow c=1\). Do đó \(f(x)=\frac{1}{2}\ln|2x-1|+1\rightarrow f(5)=\frac{1}{2}\ln 9+1=\ln 3+1\)

Đáp án D

AH
Akai Haruma
Giáo viên
1 tháng 2 2017

Lời giải:

Bài 16

Khai triển:

\(F(x)=\int \frac{(x-1)^3}{2x^2}dx=\int \frac{x^3-3x^2+3x-1}{2x^2}dx=\int \frac{x}{2}dx-\int\frac{3}{2}dx+\int\frac{3}{2x}dx-\int\frac{dx}{2x^2}\)

Cụ thể có:

\(\int \frac{x}{2}dx=\frac{x^2}{4};\int\frac{3}{2}dx=\frac{3x}{2};\int\frac{3dx}{2x}=\frac{3}{2}\ln|x|;\int\frac{dx}{2x^2}=-\frac{1}{2x}\)

Do đó \(F(x)=\frac{x^2}{4}-\frac{3x}{2}+\frac{3\ln|x|}{2}+\frac{1}{2x}+c\)

Phương án D.

Bài 18:

\(\int f(x)dx=\sin 2x\cos 2x\Rightarrow f(x)=(\sin 2x\cos 2x)'\)

\(\Leftrightarrow f(x)=(\frac{\sin 4x}{2})'=2\cos 4x\)

(không có đáp án đúng?)

Câu 36

Đặt \(\left\{\begin{matrix} u=\ln (\ln x)\\ dv=\frac{dx}{x}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{1}{x\ln x}dx\\ v=\int\frac{dx}{x}=\ln x\end{matrix}\right.\)

Khi đó \(I=\ln x\ln(\ln x)-\int\ln x\frac{1}{x\ln x}dx=\ln x\ln(\ lnx)-\int\frac{dx}{x}=\ln x\ln (\ln x)-\ln x+c\)

Đáp án C

AH
Akai Haruma
Giáo viên
16 tháng 2 2017

Lời giải:

Để đồ thị hàm số có điểm cực đại, cực tiểu thì phương trình \(y'=-3x^2+6mx+3(1-m^2)=0\Leftrightarrow x^2-2mx+m^2-1=0\)

phải có hai nghiệm phân biệt.

Trước tiên \(\Delta'=m^2-(m^2-1)=1>0\)

Theo định lý Viet, hai điểm cực đại cực tiểu có hoành độ \(x_1,x_2\) thỏa mãn

\(\left\{\begin{matrix} x_1+x_2=2m\\ x_1x_2=m^2-1\end{matrix}\right.\)

Để tồn tại cực trị thuộc trục hoành thì \(y_1y_2=0\)

Dựa vào \(x_1,x_2\) là nghiệm của \(x^2-2mx+m^2-1=0\) ta rút gọn bớt $y$ như sau:

\(-y=x^3-3mx^2+3(m^2-1)x-m^3+m^2=x(1-m^2)-mx^2+3(m^2-1)x-m^3+m^2\)

\(2(m^2-1)x-mx^2-m^3+m^2=-m(x^2-2mx)-2x-m^3+m^2\)

\(=-m(1-m^2)-2x-m^3+m^2=-2x-m+m^2\)

Do đó mà:

\(y_1y_2=(2x_1+m-m^2)(2x_2+m-m^2)=0\Leftrightarrow 4(m^2-1)+4m(m-m^2)+(m-m^2)^2=0\)

\(\Leftrightarrow (m-1)(m^3-5m^2+4m+4)=0\)

\(\Leftrightarrow (m-1)(m-2)(m^2-3m-2)=0\)

Vì điểm cực tiểu thuộc trục hoành nên \(x_{CT}=\frac{m^2-m}{2}< m\Rightarrow m^2<3m\Rightarrow x^2-3m-2\neq 0\)

\(\Rightarrow m\in\left\{1,2\right\}\).