Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu nào dạng cũng giống nhau, ko biết 1 câu là ko giải đc toàn bộ
2E=1+\(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2003}}\)
2E-E=1-\(\frac{1}{2^{2004}}\)
E=\(\frac{1}{2^{2004}}\)
Ủng hộ mk nha
Mk làm bai 1 thôi:
\(A=1+2+2^2+2^3+...+2^{2015}+2^{2016}\)
\(2A=2+2^2+2^3+2^4+...+2^{2016}+2^{2017}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2016}+2^{2017}\right)-\left(1+2+2^2+2^3+2^4+...+2^{2015}+2^{2016}\right)\)
\(A=2+2^2+2^3+2^4+...+2^{2016}+2^{2017}-1-2-2^2-2^3-2^4-...-2^{2016}-2^{2017}\)
\(A=2^{2017}-1\)
Ta có: \(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{98}-\frac{1}{99}\)
\(\Rightarrow A=\frac{1}{6}+\frac{1}{20}+.....+\frac{1}{9702}\)
\(\Rightarrow A=\frac{1}{2.3}+\frac{1}{4.5}+...+\frac{1}{98.99}\)
\(\Rightarrow A=\frac{1}{2}-\frac{1}{99}\)
\(\Rightarrow A=\frac{97}{198}\)
c)
\(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+....+\left(1-\frac{1}{42}\right)+\left(1-\frac{1}{56}\right)\)
\(\left(1+1+1+....+1+1\right)+\left(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{6\times7}+\frac{1}{7\times8}\right)\)(Có 7 số 1)
\(7+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(7+1-\frac{1}{8}=\frac{63}{8}\)
Gợi ý 1 bài c) còn d) e) cũng làm như vậy nhé
Chúc bạn học tốt !!!