Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tim Gia Tri Nho Nhat Cua
a) A = x - 4 can x + 9
b) B = x - 3 can x - 10
c ) C = x - can x + 1
d ) D = x + can x + 2
Gọi x là số luống rau , y là số rau mỗi luống
Điều kiện : x > 4 ; y > 3 ; \(x,y\in N\)
Số cây trong vườn là : xy ( cây )
+ Tăng 8 luống , mỗi luống ít hơn 3 cây thì số luống là x + 8 , số cây mỗi luống là y - 3
=> Tổng số cây trong vườn là : ( x + 8 )( y - 3 ) cây
Số cây trong vườn ít hơn 54 cây nên ta có p/trình :
\(\left(x+8\right)\left(y-3\right)=xy-54\)
\(\Leftrightarrow xy-3x+8y-24=xy-54\)
\(\Leftrightarrow xy-3x+8y-xy=-54+24\)
\(\Leftrightarrow-3x+8y=-30\)
\(\Leftrightarrow3x-8y=30\)
+ Giảm 4 luống mỗi luống tăng thêm 2 cây thì số luống là x – 4 và số cây mỗi luống là y + 2
=> Số cây trong vườn là: (x – 4)(y + 2) cây
Số cây trong vườn tăng thêm 32 cây nên ta có phương trình :
(x – 4)(y + 2) = xy + 32
<=> xy – 4y + 2x – 8 = xy + 32
<=> 2x – 4y = 40
Ta có hệ phương trình :
\(\hept{\begin{cases}3x-8y=30\\2x-4y=40\end{cases}\Leftrightarrow\hept{\begin{cases}3x-8y=30\\4x-8y=80\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}4x-8y-\left(3x-8y\right)=50\\4x-8y=80\end{cases}\Leftrightarrow}\hept{\begin{cases}x=50\\y=15\end{cases}\left(tmđk\right)}\)
Vậy số rau cải bắp nhà Lan trồng là : 15 . 50 = 750 cây
(Đề hay)
Đáp án là An-Như, Bình-Mị, Cảnh-Lan.
Ta sẽ CM An không cặp với Mị, và Bình thì ko cặp với Lan.
Nếu An cặp với Mị, thì gọi \(x\) là số bông Mị mua. Khi đó An chi \(\left(x+9\right)^2\) còn Mị chi \(x^2\) nên ta có pt:
\(\left(x+9\right)^2-x^2=48\). Giải thấy ko có nghiệm nguyên dương.
Tương tự, nếu Bình cặp với Lan thì có pt \(\left(x+7\right)^2-x^2=48\), cũng ko có nghiệm nguyên dương.
-----
Ta sẽ CM An ko cặp với Lan.
Giả sử điều này xảy ra. Khi đó ta có pt \(\left(x+9\right)^2-y^2=48\)
Hay \(\left(x-y+9\right)\left(x+y+9\right)=48\)
Nhận thấy số \(x+y+9>9\) nên chỉ có 2 trường hợp thoả:
\(x-y+9=1,x+y+9=48\)
và \(x-y+9=3,x+y+9=16\)
Đáng tiếc là chẳng có trường hợp nào có nghiệm nguyên hết.
Vậy trường hợp An cặp với Lan bị loại.
-----
Vậy An phải cặp với Như. Bình đã ko cặp với Lan rồi nên Bình cặp với Mị. Suy ra Cảnh cặp với Lan.
Đặt tên các bộ ba lần lượt là A, B, ... như sau:
111 (A), 112 (B), 113 (C), 121 (D), 122 (E), 123 (F), 131 (G), 132 (H), 133 (I), 211 (J), 212 (K), 213 (L), 221 (M), 222 (N), 223 (O), 231 (P), 232 (Q), 233 (R), 311 (S), 312 (T), 313 (U), 321 (V), 322 (X), 323 (Y), 331 (Z), 332 (W), 333 (@)
Ta cần tìm dãy ngắn nhất chứa tất cả 27 bộ ba trên. Để tìm được dãy như vậy, ta sắp xếp lại các bộ ba trên sao cho hai chữ số cuối của bộ ba trước trùng với hai chữ số đầu của bộ ba sau. Một ví dụ là:
111 (A) , 112 (B), 121 (D), 211 (J), 113 (C), 131 (G), 312 (T), 122 (E), 221 (M), 212 (K), 123 (F), 231 (P), 313 (U), 132 (H), 321 (V), 213 (L), 133 (I), 332 (W), 322 (X), 222 (N), 223 (O), 232 (Q), 323 (Y), 233 (R), 333 (@), 331 (Z), 311 (S)
Sau đó loại bỏ 2 chữ số trùng nhau của các bộ ba kề nhau:
111, 112, 121, 211, 113, 131, 312, 122, 221, 212, 123, 231, 313, 132, 321, 213, 133, 332, 322, 222, 223, 232, 323, 233, 333, 331, 311
Cuối cùng ta được dãy 29 chữ số sau chứa tất cả các bộ ba có thể có của mật khẩu ba chữ số:
11121131221231321332223233311
Chú ý: dãy 29 chữ số không phải là duy nhất, tùy thuộc vào bộ ba đầu tiên và cách sắp xếp của mỗi người.
Đặt tên các bộ ba lần lượt là A, B, ... như sau:
111 (A), 112 (B), 113 (C), 121 (D), 122 (E), 123 (F), 131 (G), 132 (H), 133 (I), 211 (J), 212 (K), 213 (L), 221 (M), 222 (N), 223 (O), 231 (P), 232 (Q), 233 (R), 311 (S), 312 (T), 313 (U), 321 (V), 322 (X), 323 (Y), 331 (Z), 332 (W), 333 (@)
Ta cần tìm dãy ngắn nhất chứa tất cả 27 bộ ba trên. Để tìm được dãy như vậy, ta sắp xếp lại các bộ ba trên sao cho hai chữ số cuối của bộ ba trước trùng với hai chữ số đầu của bộ ba sau. Một ví dụ là:
111 (A) , 112 (B), 121 (D), 211 (J), 113 (C), 131 (G), 312 (T), 122 (E), 221 (M), 212 (K), 123 (F), 231 (P), 313 (U), 132 (H), 321 (V), 213 (L), 133 (I), 332 (W), 322 (X), 222 (N), 223 (O), 232 (Q), 323 (Y), 233 (R), 333 (@), 331 (Z), 311 (S)
Sau đó loại bỏ 2 chữ số trùng nhau của các bộ ba kề nhau:
111, 112, 121, 211, 113, 131, 312, 122, 221, 212, 123, 231, 313, 132, 321, 213, 133, 332, 322, 222, 223, 232, 323, 233, 333, 331, 311
Cuối cùng ta được dãy 29 chữ số sau chứa tất cả các bộ ba có thể có của mật khẩu ba chữ số:
11121131221231321332223233311
Chú ý: dãy 29 chữ số không phải là duy nhất, tùy thuộc vào bộ ba đầu tiên và cách sắp xếp của mỗi người.
18,36,54,72,90