K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2017

Chia đa giác đó thành hình vuông CDEK, hình thang KFGH, hình thang BCKH và tam giác vuông AIB

Ta có: MJ = KH – KJ – MH = 11 – 2 – 3 = 6(cm)

⇒ BC = GF = MJ = 6 (cm)

CJ = CF – FG = 6 – 2 = 4 (cm)

SKFGH=HK+GF2.FJ=11+62.2=17(cm2)SBCKH=BC+KH2.CJ=11+62.4=34(cm2)SKFGH=HK+GF2.FJ=11+62.2=17(cm2)SBCKH=BC+KH2.CJ=11+62.4=34(cm2)

Trong tam giác vuông CJK có ˆJ=90∘J^=90∘. Theo định lý Pi-ta-go ta có:

CK2=CJ2+JK2=16+9=25⇒CK=5CK2=CJ2+JK2=16+9=25⇒CK=5 (cm)

SCDEK=CK2=52=25SCDEK=CK2=52=25 (cm2 )

Trong tam giác vuông BMH có ˆM=90∘M^=90∘.Theo định lý Pi-ta-go ta có:

BH2=BM2+HM2BH2=BM2+HM2

mà BM = CJ = 4(cm) (đường cao hình thang BCKH)

⇒BH2=42+22=20IB=BH2⇒IB2=BH24=204=5IB=√5(cm)⇒BH2=42+22=20IB=BH2⇒IB2=BH24=204=5IB=5(cm)

∆ AIB vuông cân tại I (vì AI = IH = IB)

SAIB=12AI.IB=12IB2=52SAIB=12AI.IB=12IB2=52 ( cm2 )

S=SCDEK+SKFGH+SBCKH+SAIB=25+17+34+52=1572S=SCDEK+SKFGH+SBCKH+SAIB=25+17+34+52=1572 (cm2 )


21 tháng 3 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Chia đa giác đó thành hình vuông CDEK, hình thang KFGH, hình thang BCKH và tam giác vuông AIB

Ta có: MJ = KH – KJ – MH = 11 – 2 – 3 = 6(cm)

⇒ BC = GF = MJ = 6 (cm)

CJ = CF – FG = 6 – 2 = 4 (cm)

S K F G H  = (HK + GF)/2. FJ = (11 + 6)/2.2 = 17 ( c m 2 )

S B C K H  = (BC + KH)/2. FJ = (11 + 6)/2.4 = 34 ( c m 2 )

Trong tam giác vuông BMH có ∠ J = 90 0  .Theo định lý Pi-ta-go ta có:

C K 2 = C J 2 + J K 2  = 16 + 9 = 25 ⇒ CK = 5 (cm)

S C D E K = C K 2 = 5 2  = 25 ( c m 2 )

Trong tam giác vuông BMH có  ∠ M =  90 0  .Theo định lý Pi-ta-go ta có:

B H 2 = B M 2 + H M 2

mà BM = CJ = 4(cm) (đường cao hình thang BCKH)

⇒ B H 2 = 4 2 + 2 2  = 20

IB = BH/2 ⇒ I B 2 = B H 2 / 2 = 20/4 = 5

IB = 5 (cm)

∆ AIB vuông cân tại I (vì AI = IH = IB)

S A I B  = 1/2 AI. IB = 1/2 I B 2  = 5/2 ( c m 2 )

S = S C D E K + S K F G H + S B C K H + S A I B  = 25 + 17 + 34 + 5/2 = 157/2 ( c m 2 )

3 tháng 5 2017

Bài giải:

SADEF=\(\dfrac{\left(AD+EF\right).FG}{2}=\dfrac{\left(4+2\right).2}{2}=6\left(cm^2\right)\)

SABCD=\(\dfrac{\left(AD+BC\right).BG}{2}=\dfrac{\left(4+1\right).1}{2}=2,5\left(cm^2\right)\)

=> SABCDEF= SADEF+SABCD= 6+2,5=8,5(cm2)

b) SDEA=\(\dfrac{DE.AE}{2}=\dfrac{4.3}{2}=6\left(cm^2\right)\)

SDCFE=\(\dfrac{\left(DE+CF\right).EF}{2}=\dfrac{\left(4+8\right).4}{2}=24\left(cm^2\right)\)

SCFB=\(\dfrac{CF.FB}{2}=\dfrac{8.6}{2}=24\left(cm^2\right)\)

=> SABCD=SDEA+SDCFE+SCFB=6+24+24=54(cm2)

24 tháng 4 2017

Từ hình khai triển bên, ta có thể gấp theo các cạnh để được hình lăng trụ đứng.

Các phát biểu đúng:

- Cạnh AD vuông góc với cạnh AB

- EF và CF là hai cạnh vuông góc với nhau

- Hai đáy (ABC) và (DEF) nằm trên hai mặt phẳng song song với nhau