K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

 Các trường hợp để tổng số chấm xuất hiện trên con xúc xắc bằng 8 qua hai lần gieo là: (4,4), (3,5), (5,3), (2,6), (6,2).

Chọn C.

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Ta có số phần tử của không gian mẫu là \(n\left( \Omega  \right) = 36\).

a) Ta có \(E = \left\{ {\left( {1,1} \right);\left( {1,2} \right);\left( {2,1} \right);\left( {2,2} \right)} \right\}\). Suy ra \(n\left( E \right) = 4\) và \(P\left( E \right) = \frac{4}{{36}} = \frac{1}{9}\).

b) Ta có \(F = \{(1,5);(2,5);(3,5);(4,5);(5,5);(6,5);(1,6);(2,6);(3,6);(4,6);(5,6);(6;6)\}\). Suy ra \(n\left( F \right) = 12\). Vậy \(P\left( F \right) = \frac{{12}}{{36}} = \frac{1}{3}\).

c) Ta có \(G = \{ \left( {1;1} \right);\left( {1,2} \right);\left( {1,3} \right);\left( {1,4} \right);\left( {1,5} \right);\left( {2,1} \right);\left( {2,2} \right);\left( {3,1} \right);\left( {4,1} \right);\left( {5,1} \right)\} \). Suy ra \(n\left( G \right) = 10\). Vậy \(P\left( G \right) = \frac{{10}}{{36}} = \frac{5}{{18}}\).

d) Ta có \(H = \{ ( 1,1 );( 1,2 );( 2,1 );( 1,4 );( 2,3 );( 3,2 );( 4,1 );( 1,6 ) ;( 2,5 ) ;( 3,4 );( 4,3 );( 5,2 );( 6,1 );( 5,6 );( 6,5 ) \}\). Suy ra \(n\left( H \right) = 15\). Vậy \(P\left( H \right) = \frac{{15}}{{36}} = \frac{5}{{12}}\).

a: A={(1;1); (1;2); ...; (1;6)}

=>n(A)=6

P(A)=6/36=1/6

b: B={(1;4); (2;3); (3;2); (4;1)}

=>P(B)=4/36=1/9

c: C={(3;1); (4;2); (5;3); (6;4)}

=>P(C)=4/36=1/9

d: D={(1;3); (1;5); (1;1); (3;5); (3;1); (3;3); (5;3); (5;1); (5;5)}

=>P(D)=9/36=1/4

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Vì hai con xúc xắc được gieo đồng thời, nên kết quả không phân biệt thứ tự

Gọi là biến cố “Số chấm xuất hiện trên hai con xúc xắc hơn kém nhau 3 chấm”. Tập hợp mô tả biến cố là:

\(A = \left\{ {(1;4),(2;5),(3;6)} \right\}\)(Với kết quả của phép thử là cặp số (i; j) trong đó và lần lượt là số chấm trên hai con xúc xắc)

b) Vì hai con xúc xắc được gieo đồng thời, nên kết quả không phân biệt thứ tự

Gọi là biến cố “Tích số chấm xuất hiện trên hai con xúc xắc chia hết cho 5”. Tập hợp mô tả biến cố là:

\(A = \left\{ {(1;5),(2;5),(3;5),(4;5),(6;5)} \right\}\)(Với kết quả của phép thử là cặp số (i; j) trong đó và lần lượt là số chấm trên hai con xúc xắc)

c) Vì hai con xúc xắc được gieo đồng thời, nên kết quả không phân biệt thứ tự

Gọi là biến cố “Tổng số chấm xuất hiện trên hai con xúc xắc là số lẻ”. Tập hợp mô tả biến cố là:

\(C = \left\{ {(a,b)\left| {a = 2,4,6;b = 1;3;5} \right.} \right\}\)(Với kết quả của phép thử là cặp số (a,b) trong đó và lần lượt là số chấm trên hai con xúc xắc)

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Kết quả của phép thử là một cặp số (a;b) trong đó a, b lần lượt là số chấm xuất hiện trên con xúc xắc thứ nhất và thứ hai, suy ra:

\(B = \left\{ {(1;1),(2;2),(3;3),(4;4),(5;5),(6;6)} \right\}\)

\(C = \left\{ {(2;1),(4;2),(6;3)} \right\}\)

b) Từ tập hợp mô tả biến cố ở câu a) ta có:

Có 6 kết quả thuận lợi cho biến  cố B

Có 3 kết quả thuận lợi cho biến cố C

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Số phần tử của không gian mẫu là \(n\left( \Omega  \right) = 36\)

Gọi E là biến cố \(E = \left\{ {\left( {1,1} \right);\left( {1;2} \right);\left( {1,3} \right);\left( {2  ;1} \right);\left( {2;2} \right);\left( {3,1} \right)} \right\}\) suy ra \(n\left( E \right) = 6\)

Vậy \(P\left( E \right) = \frac{6}{{36}} = \frac{1}{6}\).

Chọn B

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Số phần tử của không gian mẫu là \(n\left( \Omega  \right) = 36\).

Gọi E là biến cố tổng số chấm xuất hiện trên hai con xúc xắc bằng 4 hoặc bằng 6. Khi đó ta có \(E = \left\{ {\left( {1,3} \right);\left( {2,2} \right);\left( {3,1} \right);\left( {1,5} \right);\left( {2,4} \right);\left( {3,3} \right);\left( {4,2} \right);\left( {5,1} \right)} \right\} \Rightarrow n\left( E \right) = 8\).

Vậy xác suất của biến cố E là \(P\left( E \right) = \frac{{n\left( E \right)}}{{n\left( \Omega  \right)}} = \frac{8}{{36}} = \frac{2}{9}\).

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Biến cố: “Số chấm xuất hiện trên con xúc xắc là một hợp số” không phải là biến cố \(\overline K \).

b) Ta có \(K = \left\{ {2;3;5} \right\}\) và \(\overline K  = \left\{ {1;4;6} \right\}\).

27 tháng 9 2023

Tổng số chấm của hai con xúc sắc lớn nhất có thể là: 6+6=12 (chấm)

Vậy tất cả các kết quả gieo hai con xúc sắc đều là kết quả thuận lợi đối với biến cố D. Số kết quả thuận lợi: 6 x 6 = 36 (kết quả)

Và không có kết quả nào thuận lợi với biến cố E (không có TH nào tổng số chấm hai con xúc sắc gieo ra được bằng 13)

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Số phần tử của không gian mẫu là \(n\left( \Omega  \right) \ = {6^2}\; =36 \) .

a) Gọi A là biến cố: “Tổng số chấm trên hai con xúc xắc bằng 8”

Ta có \(A = \left\{ {\left( {2,6} \right);\left( {3,5} \right);\left( {4,4} \right);\left( {5,3} \right);\left( {6,2} \right)} \right\}\) suy ra \(n\left( A \right) = 5\)

Vậy xác suất của biến cố A là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{5}{{36}}\)

b) Gọi B là biến cố: “Tổng số chấm trên hai con xúc xắc nhỏ hơn 8”

Gọi C là biến cố: “Tổng số chấm trên hai con xúc xắc lớn hơn 8”

\(C = \left\{ {\left( {3;6} \right),\left( {4;5} \right),\left( {4;6} \right),\left( {5;4} \right),\left( {5;5} \right),\left( {5;6} \right),\left( {6;3} \right),\left( {6;4} \right),\left( {6;5} \right),\left( {6;6} \right)} \right\}\) suy ra \(n\left( C \right) = 10\)

Ta có: \(n\left( B \right) = n\left( \Omega  \right) - n\left( A \right) - n\left( C \right) = 21\)

Vậy xác suất của biến cố B là \(P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega  \right)}} = \frac{{21}}{{36}} = \frac{7}{{12}}\).