Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện: \(\left\{\begin{matrix}x+1\ge0\\x-3>0\end{matrix}\right.\) \(\Rightarrow x>3\)
\(A=\frac{\sqrt{x+1}}{\sqrt{x-3}}\)
\(\Leftrightarrow A^2=\frac{x+1}{x-3}=1+\frac{4}{x-3}\)
Để A nguyên trước hết ta tìm giá trị x để cho A2 là nguyên trước đã hay (x - 3) là ước của 4.
\(\Rightarrow\left(x-3\right)=\left(-4,-2,-1,1,2,4\right)\)
\(\Rightarrow x=\left(-1,1,2,4,5,7\right)\)
\(\Rightarrow A^2=\left(5,6,8\right)\) (loại các giá trị x < 3)
Vậy không tồn tại giá trị x để A là số nguyên
Ta có:\(2009^{20}=\left(2009^2\right)^{10}=4036081^{10}< 20092009^{10}\)
Vậy \(2009^{20}< 20092009^{10}\)
17x + 4 chia hết cho 7
=> 14x + 3x + 4 - 7 chia hết cho 7
=> 14x + 3x - 3 chia hết cho 7
=> 14x + 3(x - 1) chia hết cho 7
Mà 14x chia hết cho 7 => 3(x - 1) chia hết cho 7
Lại có (3;7)=1 => x - 1 chia hết cho 7
=> x = 7.k + 1(k thuộc N)
Ta có hình vẽ:
x x' O y y' \(\widehat{xOy}+\widehat{yOx'}+\widehat{x'Oy'}=297^o\)
\(\widehat{xOy}\) và \(\widehat{x'Oy'}\) đối đỉnh \(\Rightarrow\widehat{xOy}=\widehat{x'Oy'}\)
\(\widehat{x'Oy}\) và \(\widehat{x'Oy'}\) kề bù nên:
\(\widehat{x'Oy'}+\widehat{x'Oy}=180^o\)
\(\Rightarrow\widehat{xOy}+180^0=297^o\)
\(\Rightarrow\widehat{xOy}=117^o\)
\(\widehat{xOy}=\widehat{x'Oy'}=117^o\)
\(\Rightarrow\widehat{x'Oy}=297^o-117^o-177^o=3^o\)
\(\widehat{x'Oy}\) đối đỉnh với \(\widehat{xOy'}\) nên
\(\widehat{x'Oy}=\widehat{xOy'}=3^o\)
Vậy...
\(\left(\dfrac{-5}{13}\right)^{2017}\cdot\left(\dfrac{13}{5}\right)^{2016}=\left(\dfrac{-5}{13}\right)\cdot\left(-\dfrac{5}{13}\right)^{2016}\cdot\left(\dfrac{13}{5}\right)^{2016}=\left(\dfrac{-5}{13}\right)\cdot\left(\dfrac{5}{13}\right)^{2016}\cdot\left(\dfrac{13}{5}\right)^{2016}=\left(-\dfrac{5}{13}\right)\cdot\left[\left(\dfrac{5}{13}\right)^{2016}\cdot\left(\dfrac{13}{5}\right)^{2016}\right]=\left(-\dfrac{5}{13}\right)\cdot1^{2016}=\left(-\dfrac{5}{13}\right)\cdot1=-\dfrac{5}{13}\)