Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(A=\frac{\left(1+2+3+...+100\right)x\left(101x102-101x101-51-50\right)}{2+4+6+8+...+2048}\)
\(A=\frac{\left(1+2+3+...+100\right)x\left(101x\left(102-101\right)-\left(50+51\right)\right)}{2+4+6+8+...+2048}\)
\(A=\frac{\left(1+2+3+...+100\right)x\left(101-101\right)}{2+4+6+8+...+2048}\)
\(A=\frac{\left(1+2+3+...+100\right)x0}{2+4+6+8+...+2048}\)
\(A=0\)
Ta có:Số số hạng từ 2 đến 101 là:
(101-2):1+1=100(số hạng)
Do đó từ 2 đến 101 có số cặp là:
100:2=50(cặp)
\(B=\frac{101+100+99+...+3+2+1}{101-100+99-98+3-2+1}\)
\(B=\frac{5151}{51}\)
\(B=101\)
Câu 2:
a)697:\(\frac{15x+364}{x}\)=17
\(\frac{15x+364}{x}\)=697:17
\(\frac{15x+364}{x}\)=41
15x+364=41x
41x-15x=364
26x=364
x=14
Vậy x=14
b)92.4-27=\(\frac{x+350}{x}+315\)
\(\frac{x+350}{x}+315\)=341
\(\frac{x+350}{x}\)=26
x+350=26
x=26-350
x=-324
Vậy x=-324
c, 720 : [ 41 - ( 2x -5)] = 40
[ 41 - ( 2x -5)] =720:40
[ 41 - ( 2x -5)] =18
2x-5=41-18
2x-5=23
2x=28
x=14
Vậy x=14
d, Số số hạng từ 1 đến 100 là:
(100-1):1+1=100(số hạng)
Tổng dãy số là:
(100+1)x100:2=5050
Mà cứ 1 số hạng lại có 1x suy ra có 100x
Ta có:(x+1) + (x+2) +...+ (x+100) = 5750
(x+x+...+x)+(1+2+...+100)=5750
100x+5050=5750
100x=700
x=7
Vậy x=7
\(a.697:\dfrac{15a+364}{a}=17\\ =>\dfrac{15a+364}{a}=697:17=41\\ =>41a=15a+364\\ =>41a-15a=364\\ =>26a=364=>a=\dfrac{364}{26}=14 \\ b.92.4-27=\dfrac{a+350}{a}+315 \\ =>92.4-27-315=\dfrac{a+350}{a}\\ =>26=\dfrac{a+350}{a}\\ =>26a=a+350=>25a=350 \\ =>a=14\)
1990.1990-1992.1998
=1990.1990-(1990+2).1998
=1990.1990-1990.1998+2.1998
=1990.(1990-1998)+2.1998
=1990.(-8)+2.1998
=1990.(-8)+2.(1990+8)
=1990.(-8)+2.1990+16
=1990.{(-8)+2}+16
=1990.(-6)+2.8
=(-1990).3.2+2.8
=-5970.2+2.8
=2.{(-5970)+8}
=2.-5962
=−11924
Bài 1:
a.1990.1990-1992.1988
Gọi 1990 là a ta có:
1992=a+2
1988=a-2
\(\Rightarrow A=a^2-\left(a+2\right)\left(a-2\right)\)
\(\Rightarrow A=a^2-a^2-2a+2a-4\)
\(\Rightarrow A=-4\)
Bài 1:
\(\frac{37.13-13}{24+37.12}=\frac{13.\left(37-1\right)}{2.12+37.12}=\frac{13.36}{12.\left(37+2\right)}=\frac{13.36}{12.39}=\frac{1.3}{1.3}=1\)
Bài 2:
\(\frac{101+100+...+2+1}{101-100+99-98+...+3-2+1}=\frac{\left[\left(101-1\right):1+1\right].\left(101+1\right):2}{\left(101-100\right)+\left(99-98\right)+...+\left(3-2\right)+1}\)\(=\frac{101.102:2}{1.\left[\left(101-1\right):2+1\right]}=\frac{5151}{1.51}=\frac{5151}{51}=101\)
\(\frac{3737.43-4343.37}{2+4+...+100}=\frac{37.101.43-43.101.37}{2+4+...+100}=\frac{0}{2+4+6+...+100}=0\)
a) \(A=\dfrac{3737.43-4343.37}{2+4+6+...+2018}\)
\(\Leftrightarrow A=\dfrac{3737.43-43.101.37}{2+4+6+...+2018}\)
\(\Leftrightarrow A=\dfrac{3737.43-43.3737}{2+4+6+...+2018}\)
\(\Leftrightarrow A=\dfrac{0}{2+4+6+...+2018}\)
\(\Leftrightarrow A=0\)
b) \(B=\dfrac{101+100+99+...+3+2+1}{101-100+99-98+...+3-2+1}\)
\(\Leftrightarrow B=\dfrac{\left(101+1\right).101:2}{\left(101+99+97+...+1\right)-\left(100+98+96+...+2\right)}\)
\(\Leftrightarrow B=\dfrac{5151}{\left[\left(101+1\right).51:2\right]-\left[\left(100+2\right).50:2\right]}\)
\(\Leftrightarrow B=\dfrac{5151}{2601-2550}\)
\(\Leftrightarrow B=\dfrac{5151}{51}\)
\(\Leftrightarrow B=101\)