K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2019

\(M=2.3.4+3.4.5+..........+2018.2019.2020\)

\(\Leftrightarrow4M+6=1.2.3.4+2.3.4.\left(5-1\right)+.........+2018.2019.2020.\left(2021-2017\right)\)

\(\Leftrightarrow\text{4M=2018.2019.2020.2021-6=?}\)

4 tháng 1 2019

lm hộ mik câu 4 vs 3 trước nha

4 tháng 1 2019

c tham khảo lời giải trong này xem https://cunghocvui.com/danh-muc/toan-lop-8

4 tháng 1 2019

bạn làm ơn nêu rõ ra đc ko

10 tháng 8 2017

hi kết bạn nha

Bài 3:

a) Ta có: \(x^2+3x+3\)

\(=x^2+2\cdot x\cdot\frac{3}{2}+\frac{9}{4}+\frac{3}{4}\)

\(=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\)

Ta có: \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(\left(x+\frac{3}{2}\right)^2=0\Leftrightarrow x+\frac{3}{2}=0\Leftrightarrow x=\frac{-3}{2}\)

Vậy: Giá trị nhỏ nhất của biểu thức \(P=x^2+3x+3\)\(\frac{3}{4}\) khi \(x=\frac{-3}{2}\)

b) Ta có: \(Q=x^2+2y^2+2xy-2y\)

\(=x^2+2xy+y^2+y^2-2y+1-1\)

\(=\left(x+y\right)^2+\left(y-1\right)^2-1\)

Ta có: \(\left(x+y\right)^2\ge0\forall x,y\)

\(\left(y-1\right)^2\ge0\forall y\)

Do đó: \(\left(x+y\right)^2+\left(y-1\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x+y\right)^2+\left(y-1\right)^2-1\ge-1\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

Vậy: Giá trị nhỏ nhất của biểu thức \(Q=x^2+2y^2+2xy-2y\) là -1 khi x=-1 và y=1

21 tháng 4 2020

Cảm ơn ạ =)

19 tháng 9 2019

Bài 1a/

\(\frac{1}{1+x+xy}=\frac{xyz}{xyz+x+xy}=\frac{yz}{1+y+yz}\)

\(\frac{1}{1+z+xz}=\frac{y}{y+yz+xyz}=\frac{y}{1+y+yz}\)

Vậy \(M=\frac{1}{1+y+yz}+\frac{y}{1+y+yz}+\frac{yz}{1+y+yz}=1\)

Chiều về làm tiếp

19 tháng 9 2019

Bài 1b:Lời giải này chủ yếu nhờ dự đoán trước Min là 2011/2012 đạt được khi x=2012

Ta có \(P=\frac{2012x^2-2.2012x+2012^2}{2012x^2}=\frac{\left(x-2012\right)^2+2011x^2}{2012x^2}\ge\frac{2011x^2}{2012x^2}=\frac{2011}{2012}\)

Bài 2: Dùng phân tích thành bình phương

\(10x^2+y^2+4z^2+6x-4y-4xz+5=\left(9x^2+6x+1\right)+\left(y^2-4y+4\right)+\left(x^2-4xz+4z^2\right)\)

\(=\left(3x+1\right)^2+\left(y-2\right)^2+\left(x-2z\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}3x+1=0\\y-2=0\\x-2z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{3}\\y=2\\z=-\frac{1}{6}\end{cases}}}\)

Bài 3:

a/\(pt\Leftrightarrow\left(x+6\right)\left(x-5\right)\left(x^2-x+1\right)=0\Leftrightarrow x=-6,x=5\)

b/ta phân tích vế trái thành:\(\left(3x-3\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\Rightarrow\hept{\begin{cases}x=1\\y=3\\z=-1\end{cases}}\)

22 tháng 6 2018

Đăng từng bài thôi nha bạn 

Bài 1 : Năm nay mới lên lớp 8 -_- 

Bài 2 : 

\(a)\) 

* Câu A : 

\(A=x^2+4x-7\)

\(A=\left(x^2+4x+4\right)-11\)

\(A=\left(x+2\right)^2-11\ge-11\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=-2\) ( ở đây nhiều bài quá nên mình làm tắt cho nhanh, bạn nhớ trình bày rõ ra nhé ) 

Vậy GTNN của \(A\) là \(-11\) khi \(x=-2\)

* Câu B : 

\(B=2x^2-3x+5\)

\(2B=4x^2-6x+10\)

\(2B=\left(4x^2-6x+1\right)+9\)

\(2B=\left(2x-1\right)^2+9\ge9\)

\(B=\frac{\left(2x-1\right)^2+9}{2}\ge\frac{9}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=\frac{1}{2}\)

Vậy GTNN của \(B\) là \(\frac{9}{2}\) khi \(x=\frac{1}{2}\)

* Câu C : 

\(C=x^4-3x^2+1\)

\(C=\left(x^4-3x^2+\frac{9}{4}\right)-\frac{5}{4}\)

\(C=\left(x^2-\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\orbr{\begin{cases}x=\sqrt{\frac{3}{2}}\\x=-\sqrt{\frac{3}{2}}\end{cases}}\)

Vậy GTNN của \(C\) là \(-\frac{5}{4}\) khi \(x=\sqrt{\frac{3}{2}}\) hoặc \(x=-\sqrt{\frac{3}{2}}\)

Chúc bạn học tốt ~ 

9 tháng 4 2016

Bài  \(1a.\)  Tìm  \(x,y,z\)  biết \(x^2+4y^2=2xy+1\)   \(\left(1\right)\)  và  \(z^2=2xy-1\)  \(\left(2\right)\)

Cộng  \(\left(1\right)\)  và  \(\left(2\right)\)  vế theo vế, ta được:

\(x^2+4y^2+z^2=4xy\)

\(\Leftrightarrow\)  \(x^2-4xy+4y^2+z^2=0\)

\(\Leftrightarrow\)  \(\left(x-2y\right)^2+z^2=0\)

Do  \(\left(x-2y\right)^2\ge0\)  và  \(z^2\ge0\)  với mọi  \(x,y,z\)

nên để thỏa mãn đẳng thức trên thì phải đồng thời xảy ra  \(\left(x-2y\right)^2=0\)  và  \(z^2=0\)

\(\Leftrightarrow\)  \(^{x-2y=0}_{z^2=0}\)  \(\Leftrightarrow\)  \(^{x=2y}_{z=0}\)

Từ  \(\left(2\right)\), với chú ý rằng  \(x=2y\)  và  \(z=0\), ta suy ra:

\(2xy-1=0\)  \(\Leftrightarrow\)  \(2.\left(2y\right).y-1=0\)  \(\Leftrightarrow\)  \(4y^2-1=0\)  \(\Leftrightarrow\)  \(y^2=\frac{1}{4}\)  \(\Leftrightarrow\)  \(y=\frac{1}{2}\)  hoặc  \(y=-\frac{1}{2}\)

\(\text{*)}\)  Với  \(y=\frac{1}{2}\) kết hợp với \(z=0\) \(\left(cmt\right)\)  thì  \(\left(2\right)\)  \(\Rightarrow\)  \(2.x.\frac{1}{2}-1=0\)  \(\Leftrightarrow\)  \(x=1\)

\(\text{*)}\)  Tương tự với trường hợp  \(y=-\frac{1}{2}\), ta cũng dễ dàng suy ra được \(x=-1\)

Vậy, các cặp số  \(x,y,z\)  cần tìm là  \(\left(x;y;z\right)=\left\{\left(1;\frac{1}{2};0\right),\left(-1;-\frac{1}{2};0\right)\right\}\)

\(b.\)  Vì  \(x+y+z=1\)  nên  \(\left(x+y+z\right)^2=1\)

\(\Leftrightarrow\)  \(x^2+y^2+z^2+2\left(xy+yz+xz\right)=1\)  \(\left(3\right)\)

Mặt khác, ta lại có  \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)  \(\Rightarrow\)  \(xy+yz+xz=0\)  \(\left(4\right)\) (do  \(xyz\ne0\))

Do đó,  từ  \(\left(3\right)\) và \(\left(4\right)\)  \(\Rightarrow\)  \(x^2+y^2+z^2=1\)

Vậy,  \(B=1\)

9 tháng 4 2016

1a) x=1, y=1/2, z=0

29 tháng 1 2017

P.An hở

7 tháng 4 2016

a, Ở phân số tử là a đầu tiên, thì nhân cả tử và mẫu cho c. Ở phân số thứ 2 có tử là b, nhân với ac, còn phân số còn lại giữ nguyên. Thì bạn sẽ có 3 phân số cùng mẫu nhé :3 Xong công vào ra 1 ^^

b, Viết bình phương (x+y+z)^2= bla blo :v Xong thay giữ kiện xy +yz+zx = 1 vào là done. Xong để có 10x^2+10y^2+z^2 thì dễ rồi nhé ^^

13 tháng 11 2019

a. Câu hỏi của Nguyễn Văn An - Toán lớp 8 - Học toán với OnlineMath