Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\hept{\begin{cases}\left(x-y\right)^2=1\\2x^2+2y^2-2xy-y=0\end{cases}}\)
Xét từng TH với x-y=1 và x-y=-1
\(b,\hept{\begin{cases}\left(x-1\right)\left(y+2\right)=0\\xy-3x+2y=0\end{cases}}\)
Xét từng TH x=1 và y=-2
\(\hept{\begin{cases}x^2+2xy+2y^2+3x=0\left(1\right)\\xy+y^2+3y+1=0\left(2\right)\end{cases}}\)
Lấy pt (1)+2*pt (2) ta được:
\(\left(x+2y\right)^2+3\left(x+2y\right)+2=0\)
\(\Leftrightarrow\left(x+2y+1\right)\left(x+2y+2\right)=0\)
- Nếu \(x+2y+1=0\Rightarrow x=-2y-1\)thay vào (2) ta được:
\(y^2-2y-1=0\)\(\Rightarrow\orbr{\begin{cases}y=1+\sqrt{2}\\y=1-\sqrt{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3-2\sqrt{2}\\x=-3+2\sqrt{2}\end{cases}}\)
- Nếu \(x+2y+2=0\Rightarrow x=-2y-2\) thay vào (2) ta được:
\(y^2-y-1=0\Rightarrow\orbr{\begin{cases}y=\frac{1-\sqrt{5}}{2}\\y=\frac{1+\sqrt{5}}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3+\sqrt{5}\\x=-3-\sqrt{5}\end{cases}}\)
Vậy hpt có 4 nghiệm (x;y) là : \(\left(-3-2\sqrt{2};1+\sqrt{2}\right);\left(-3+2\sqrt{2};1-\sqrt{2}\right)\)\(;\left(-3+\sqrt{5};\frac{1-\sqrt{5}}{2}\right);\left(-3-\sqrt{5};\frac{1+\sqrt{5}}{2}\right)\)
pt ở đề bài <=> x^2-2x(y-2)-(3y-1)=0 (1)
để pt có nghiệm x nguyên thì delta phải là số chính phương
xét delta=[2(y-2)]^2+4=a^2 => a^2-(2y-4)^2=4=>(a-2y+4)(a+2y-4)=4 đến đây giải pt ước số rồi tìm y => tìm x
-nghĩ vậy chả biết có đúng không <(")
b) x2y + x + xy2 + y + 2xy = 9
xy(x + y + 2) + (x + y + 2) = 11
<=> (xy + 1)(x + y + 2) = 11
Xét các TH
+) \(\hept{\begin{cases}xy+1=1\\x+y+2=11\end{cases}}\) <=> \(\hept{\begin{cases}xy=0\\x+y=9\end{cases}}\) <=> x = 0 => y = 9 hoặc y = 0 => x = 9
+) \(\hept{\begin{cases}xy+1=-1\\x+y+2=-11\end{cases}}\)<=> \(\hept{\begin{cases}xy=-2\\x+y=-13\end{cases}}\) <=> \(\hept{\begin{cases}x=-13-y\\y\left(-13-y\right)=-2\end{cases}}\)
<=> \(\hept{\begin{cases}x=-13-y\\y^2+13y-2=0\end{cases}}\)(loại)
+) \(\hept{\begin{cases}xy+1=11\\x+y+2=1\end{cases}}\) <=> \(\hept{\begin{cases}xy=10\\x+y=-1\end{cases}}\) <=> \(\hept{\begin{cases}y\left(-1-y\right)=10\\x=-1-y\end{cases}}\) <=> \(\hept{\begin{cases}y^2+y+10=0\\x=-1-y\end{cases}}\)(loại)
+) \(\hept{\begin{cases}xy+1=-11\\x+y+2=-1\end{cases}}\) <=> \(\hept{\begin{cases}xy=-12\\x+y=-3\end{cases}}\) <=> \(\hept{\begin{cases}y\left(-3-y\right)=-12\\x=-3-y\end{cases}}\) <=> \(\hept{\begin{cases}y^2+3y-12=0\\x=-3-y\end{cases}}\) (loại)
Lời giải:
a. Bạn xem lại đề. $2y-3y$ hay $2x-3y$ hay $2y-3x$?
b. $2xy-y-x=1$
$\Leftrightarrow y(2x-1)-x=1$
$\Leftrightarrow 2y(2x-1)-2x=2$
$\Leftrightarrow 2y(2x-1)-(2x-1)=3$
$\Leftrightarrow (2x-1)(2y-1)=3$
Do $x,y$ là số nguyên nên $2x-1,2y-1$ cũng là số nguyên. Ta có các TH sau:
TH1: $2x-1=1, 2y-1=3\Rightarrow x=1; y=2$
TH2: $2x-1=3; 2y-1=1\Rightarrow x=2; y=1$
TH3: $2x-1=-1; 2y-1=-3\Rightarrow x=0; y=-1$
TH4: $2x-1=-3; 2y-1=-1\Rightarrow x=-1; y=0$