Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1/
a/ Ta có: ∆' = (m - 1)2 + 3 + m
= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)
Vậy PT luôn có 2 nghiệm phân biệt.
Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)
Theo đ
Bài 1/
a/ Ta có: ∆' = (m - 1)2 + 3 + m
= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)
Vậy PT luôn có 2 nghiệm phân biệt.
Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)
Theo đề bài thì
\(x^2_2+x^2_1\ge10\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge10\)
\(\Leftrightarrow\left(2m-2\right)^2-2\left(-3-m\right)\ge0\)
Làm tiếp sẽ ra. Câu còn lại tương tự
Link : https://123doc.org/document/3369350-ung-dung-cua-dinh-ly-viet.htm
Trang 2 nhé :33
\(\Delta=25-4\left(m+4\right)=9-4m\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m+4\end{matrix}\right.\)
a/ \(\Delta>0\Rightarrow m< \frac{9}{4}\)
\(x_1^2+x_2^2=23\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=23\)
\(\Leftrightarrow25-2\left(m+4\right)=23\Rightarrow m+4=1\Rightarrow x=-3\) (t/m)
b/ \(\Delta\ge0\Rightarrow m\le\frac{9}{4}\)
Để pt có nghiệm khác 0 thì \(m\ne-4\)
Khi đó: \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=-3\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=-3\)
\(\Leftrightarrow\frac{25-2\left(m+4\right)}{m+4}=-3\)
\(\Leftrightarrow-m-4=25\Rightarrow m=-29\) (t/m)