Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) phương trình (1) có a=m-1 b'=b/2 = -m-1 c=m
\(\Delta=b'^2-ac=\left(-m-1\right)^2-\left(m-1\right)\cdot m\)
\(=m^2+2m+1-m^2+m=3m+1\)
Phương trình có hai nghiệm <=> \(\Delta\ge0\Leftrightarrow3m+1\ge0\Leftrightarrow m\ge-\frac{1}{3}\)
b) Khi phương trình có hai nghiệm x1, x2, theo hệ thức Vi-ét ta có
\(\hept{\begin{cases}x_1+x_2=\frac{2m+2}{m-1}=2+\frac{4}{m-1}\\x_1\cdot x_2=\frac{m}{m-1}=1+\frac{1}{m-1}\end{cases}}\)
\(\Rightarrow x_1+x_2-4x_1\cdot x_2=-2\)
lazy à cái phần ta có mình chưa hiểu lắm. bạn giúp mình duocj ko?
Ta có : \(mx^2-2\left(m+2\right)x+m+7=0\left(a=m;b=-2m-4;c=m+7\right)\)
Để phương trình có 2 nghiệm phân biệt ta có : \(\Delta>0\)hay
\(\left(-2m-4\right)^2-4m\left(m+7\right)=-12m+16>0\)
\(\Leftrightarrow-12m+16>0\Leftrightarrow-12m>16\Leftrightarrow m>-\frac{4}{3}\)
Theo Vi et : \(x_1+x_2=\frac{2m+4}{m};x_1x_2=\frac{m+7}{m}\)
\(\Leftrightarrow m\left(x_1+x_2\right)=2m+4\)(*)
Mà \(x_1x_2=\frac{m+7}{m}\Leftrightarrow m=\frac{7}{x_1x_2-1}\)(**)
Thay vào pt (*) ta có : \(\frac{7}{x_1x_2-1}\left(x_1+x_2\right)=2.\frac{7}{x_1x_2-1}+4\)
Không ai làm
vì đề bài quá dài.
Bạn nên chí nhỏ ra nhé
sẽ có nhiều người giúp...
lo hbfbekef evef
frgrgthtgr
t
gr
grgrgrgfrgrf
r
g
rg
r
g
r
gr
f
r
r
br
g
r
gr
gr
grg
r
g
eh
h
h
t
tt
t
t
thr
htr
htht
rh
ththt
ht
ht
h
h
ht
ht
ht
h
frorgew
rnngerjn griigrnbkrtgnngnrrkvggmbemfeegnv4f
v
r
re
eb
tg
bet
eb
a, Với m=2
\(Pt\Leftrightarrow x^2-8x+9=0\Leftrightarrow\left(x-4\right)^2=7\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=\sqrt{7}\\x-4=-\sqrt{7}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{7}+4\\x=-\sqrt{7}+4\end{cases}}\)
Vậy pt có 2 nghiệm phân biệt \(\orbr{\begin{cases}x=\sqrt{7}+4\\x=-\sqrt{7}+4\end{cases}}\)
a)\(\Delta\)=(2m+3)^2-4.(m^2-1)
=12m+13
=>Phương trình có 2 nghiệm phân biệt<=>\(\Delta\ge0\)
Hay 12m+13>_0
<=>m>_-13/12
b)Vì phương trình có nghiệm x1=1 nên thay x=1 vào phương trình ta có
1^2-(2m+3)1+m^2-1=0
<=>m^2-2m-3=0
<=>m=-1 hoặc m=3
Áp dụng hệ thức Vi-ét ta có
x1.x2=m^2-1
=>x2=m^2-1
+)m=-1=>x2=0
+)m=3=>x2=8
c)Theo câu a ta có
Phương trình có 2 nghiệm phân biệt<=>m>_-13/12
Áp dụng hệ thức Vi-ét ta có
x1+x2=2m+3 và x1.x2=m^2-1 (1)
Đặt A= x1^2+x2^2=(x1+x2)^2-2.x1.x2
Thay (1) vào A ta có
A=(2m+3)^2-2(m^2-1)
=4m^2+12m+11
=(2m+3)^2+2>_2 Hay GTNN của x1^2+x2^2 là 2
Dấu "=" xảy ra <=>2m+3=0<=>m=-3/2
d)Câu này dễ b tự lm nha