Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x - 2)3 - (x - 3)(x2 + 3x + 9) + 6(x + 1)2 = 49
<=>x3-6x2+12x-8-(x3-27)+6(x2+2x+1)=49
<=>x3-6x2+12x-8-x3+27+6x2+12x+6=49
<=>24x+25=49
<=>24x=24
<=>x=1
x(x + 5)(x - 5) - (x + 2)(x2 - 2x + 4) = 42
<=>x(x2-25)-(x3+8)=42
<=>x3-25x-x3-8=42
<=>-25x-8=42
<=>-25x=50
<=>x=-2
b)(x-2)3-(x-3)(x2+3x+9)+6(x+1)2=49
(=) x3- 6x2 +12 x -8 - ( x3 - 27 ) + 6( x2 + 2x +1)
(=) x3 - 6x2 +12x -8 - x3 +27 + 6x2 +12x +6
(=) 24x + 25 = 49
(=) 24x = 49 - 25 = 24
(=) x = 24/24 =1
a) \(\left(x+3\right)^2-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)-2x^2=54\)
=> x2 + 6x + 9 - x(9x2 + 6x + 1) + (2x)3 + 13 - 2x2 = 54
=> x2 + 6x + 9 - 9x3 - 6x2 - x + 8x3 + 1 - 2x2 = 54
=> (-9x3 + 8x3) + (x2 - 6x2 - 2x2) + (6x - x) + (9 + 1) = 54
=> -x3 - 7x2 + 5x + 10 = 54
=> -(x3 + 7x2 - 5x - 10) = 54
=> phương trình vô nghiệm
b) (x + 3)3 - (x - 3)(x2 + 3x + 9) + 6(x + 1)2 + 3x = -33
=> x3 + 9x2 + 27x + 27 - (x3 - 33) + 6(x2 + 2x + 1) + 3x = -33
=> x3 + 9x2 + 27x + 27 - x3 + 27 + 6x2 + 12x + 6 + 3x = -33
=> (x3 - x3) + (9x2 + 6x2) + (27x + 12x + 3x) + (27 + 27 + 6) = -33
=> 15x2 + 42x + 60 = -33
=> 15x2 + 42x + 60 + 33 = 0
=> 15x2 + 42x + 93 = 0
=> 3(5x2 + 14x + 31) = 0
=> 5x2 + 14x + 31 = 0
=> không tìm được x
\(1a,P=\left(x+2\right)^3+\left(x-2\right)^3-2x\left(x^2+12\right).\)
\(=x^3+6x^2+12x+8+x^3-6x^2+12x-8-2x^3-24=0\)
\(b,Q=\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)
\(=x^3-3x^2+3x-1-x^3-3x^2-3x-1+6\left(x^2-1\right)\)
\(=-6x^2-2+6x^2-6=-8\)
\(a,\left(x+1\right)^2=x+1\)
\(\left(x+1\right)^2-\left(x+1\right)=0\)
\(\left(x+1\right)\cdot\left(x+1-1\right)=0\)
\(x\cdot\left(x+1\right)=0\)
\(\hept{\begin{cases}x=0\\x+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=-1\end{cases}}}\)
\(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=49\)
\(\Leftrightarrow x^3-6x^2+12x-8-\left(x^3-27\right)+6\left(x^2+2x+1\right)=49\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6x^2+12x+6=49\)
\(\Leftrightarrow24x+25=49\)
\(\Leftrightarrow24x=24\Leftrightarrow x=1\)