Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
a) Ta đặt \(a=\left(n;37n+1\right)\) \(\left(a\inℕ^∗\right)\)
Ta có: n chia hết cho a
=> 37n chia hết cho a
=> 37n + 1 chia hết cho a
Do vậy: (37n + 1) - 37n chia hết cho a
=> 1 chia hết cho a
=> a là ước của 1
=> a = 1
=> 37n + 1 và n là hai số nguyên tố cùng nhau
\(\Rightarrow BCNN\left(n;37n+1\right)=\left(37n+1\right)n=37n^2+n\)
Bài 1:
1002013+2 = 10000000...000+2
= 1000..0002(chia hết cho 3 vì tổng các chữ số chia hết cho 3)
Vậy 1002013+2 chia hết cho 3
Bài 2:
Nếu n+5 là số chẵn thì n + 6 là số lẻ
chẵn nhân lẻ luôn bằng chẵn
Nếu n +5 là số lẻ thì n+6 là số chẵn
lẻ nhân chẵn cũng bằng chẵn
Vậy (n+5).(n+6) là 1 số chẵn
Ta thấy n ; n+1 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 => n.(n+1).(n+2) chia hết cho 2
Nếu n chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3
Nếu n chia 3 dư 1 => n+5 chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3
Nếu n chia 3 dư 2 => n+1 chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3
Vậy n.(n+1).(n+5) chia hết cho 3
=> n.(n+1).(n+5) chia hết cho 6 ( vì 2 và 3 là 2 số nguyên tố cùng nhau )
=> ĐPCM
k mk nha
vì n ( n + 1 ) ( n + 5 ) chia hết cho 6 => n ( n + 1 ) ( n + 5 ) chia hết cho 2 ; 3
+) ta thấy n ( n + 1 ) là tích của 2 số tự nhiên liên tiếp , mà trong 2 số tự nhiên liên tiếp luôn có 1 số chẵn chia hết cho 2 => n ( n + 1 ) chia hết cho 2 => n ( n + 1 ) ( n + 5 ) chia hết cho 2
+) đem chia n cho 3 xảy ra 3 trường hợp về số dư : dư 0 ; dư 1 ; dư 2
- nếu n chia cho 3 dư 0 => n chia hết cho 3 = > n ( n + 1 ) ( n + 5 ) chia hết cho 3
- nếu n chia cho 3 dư 1 => n = 3k + 1 ( k e N* )
khi đó n + 5 = 3k + 1 + 5 = 3k + 6 = 3 ( k + 2 ) chia hết cho 3
=> n ( n + 1 ) ( n + 5 ) chia hết cho 3
- nếu n chia cho 3 dư 2 => n = 3k + 2 ( k e N* )
khi đó n + 1 = 3k + 2 + 1 = 3k + 3 = 3 ( k + 1 ) chia hết cho 3
=> n ( n + 1 ) ( n + 5 ) chia hết cho 3
=> n ( n + 1 ) ( n + 5 ) chia hết cho 2 ; 3
mà ƯCLN( 2 ; 3 ) = 1
=> n ( n + 1 ) ( n + 5 ) chia hết cho 2 . 3
=> n ( n + 1 ) ( n + 2 ) chia hết cho 6
chúc bạn học tốt
^^
Gọi ƯCLN của 2n+3 và 3n+4 là d ( d thuộc N sao )
=> 2n+3 và 3n+4 đều chia hết cho d
=> 3.(2n+3) và 2.(3n+4) đều chia hết cho d
=> 6n+9 và 6n+8 đều chia hết cho d
=> 6n+9-(6n+8) chia hết cho d hay 1 chia hết cho d
=> d = 1 ( vì d thuộc N sao )
=> ƯCLN của 2n+3 và 3n+4 là 1
=> 2n+3 và 3n+4 là 2 số nguyên tố cùng nhau
k mk nha
thank bn, nhớ ủng hộ mk những câu hỏi sau nha.....>_<
*Xét n=1
=> 37n+1 chia hết cho 1
*Xét n>1
=> 37n+1 không chia hết cho n
Vậy BCNN (n;37n+1) = n(37n+1)= 37n2 + . với mọi n > 0