K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

BÀI ÔN TẬP CHƯƠNG II – HÌNH HỌC 7

I. TRẮC NGHIỆM
Câu 1: Cho tam giác MHK vuông tại H. Khẳng định đúng là:
A. M  + K > 90

0 B. M  + K = 90

0 C. M  + K < 90

0 D. M  + K = 180

0

Câu 2: Cho tam giác ABC có góc ACx là góc ngoài tại đỉnh C của tam giác ABC. Khi đó:
A. A  Cx  A C. A   Cx  A + B
B. A  Cx  B D. Cả A,B,C đều đúng
Câu 3: Cho hình vẽ. Khẳng định đúng là
A . ∆ ABC = ∆ ADE (c .g .c)
B. ∆ ABC = ∆ ADE (g .c .g)
C. ∆ ABC = ∆ ADE (cạnh huyền - g.nhọn)
D. Cả A, B, C đều đúng
Câu 4: Cho  ABC vuông cân tại A, số đo góc B bằng
A. 60
0 B. 90

0 C. 45

0 D. 120
0

Câu 5: Cho tam giác IKH vuông tại I có IK = 2cm, IH = 3cm. Độ dài cạnh HK là
A. 13 cm B. 13cm C. 5 cm D. 6,5cm
Câu 6: Cho hình vẽ. Với các kí hiệu trên hình vẽ, cần có thêm yếu tố nào để ∆ABC = ∆ADE (g-c-g)
A. BC = DE
B. AB = AD
C. AC = AE
D. BCA = DEA
Câu 7: Tam giác cân có một góc bằng ... thì tam giác đó là tam giác đều. A. 45
0 B. 90

0 C. 30

0 D. 60
0

Câu 8: Cho hình vẽ, hai tam giác ABM và ACM bằng nhau
theo trường hợp nào?
A. Cạnh – cạnh – cạnh
B. Cạnh – góc – cạnh
C. Góc – cạnh – góc
D. Cạnh huyền – cạnh góc vuông
Câu 9: Cho tam giác MNP vuông tại M, khẳng định đúng là
A. MN2 + MP
2 = NP
2 B. MN2 + NP
2 = MP
2

C. MP
2 + NP
2 = MN2 D. MP

2 - NP
2 = MN2

Câu 10: Tam giác ABC cân tại A. Khẳng định sai là:
A.   B  C B. AB = AC C. 

o  180 A
B
2
 D. 

o  180 B A
2

II. TỰ LUẬN
Bài 1: Cho  ABC cân tại B, kẻ BH AC (HAC). a) Chứng minh: HA = HC. b) Kẻ HD AB (DAB), HEBC (EBC): Chứng minh HD = HE. c) Chứng minh:  BDE cân. d) Chứng minh: 2 2 2 2 BE  DH  BC  HA . Bài 2: Cho tam giác ABC vuông tại A, AB = 8cm, AC = 6cm. a) Tính BC. b) Trên cạnh AC lấy điểm E sao cho AE = 2cm; trên tia đối của tia AB lấy điểm D sao
cho AD = AB. Chứng minh ∆BEC = ∆DEC. c) Chứng minh: DE đi qua trung điểm cạnh BC. Bài 3: Cho tam giác MNK vuông tại M. Biết MN = 9cm; MK = 12cm. a) Tính NK. b) Trên tia đối của tia MN lấy điểm I sao cho MN = MI. Chứng minh: ΔKNI cân. c) Từ M vẽ MA ⊥ NK tại A, MB ⊥ IK tại B. Chứng minh ΔMAK = ΔMBK. d) Chứng minh: AB // NI. Bài 4: Cho tam giác đều ABC. Trên tia đối của tia BA lấy điểm D sao cho BD = BA. Chứng minh:
a) DC  AC. b) Cho biết AB = 3cm. Tính Độ dài cạnh CD. Bài 5: Cho tam giác ABC vuông tại A, có  0 B  60 và AB = 5cm. Tia phân giác của góc B
cắt AC tại D. Kẻ DE vuông góc với BC tại E. a) Chứng minh: ABD =  EBD. b) Chứng minh: ABE là tam giác đều. c) Tính độ dài cạnh BC. Bài 6: Tam giác có độ dài ba cạnh sau có phải là tam giác vuông không? Vì sao?
a) 3cm, 4cm, 5cm;
b) 4cm, 5cm, 6cm. Bài 7: Cho tam giác ABC có số đo các góc A, B, C tỉ lệ với 3; 2; 1. a) Tính số đo các góc của tam giác ABC. b) Gọi D là trung điểm của AC, kẻ DM  AC (M  BC). Chứng minh rằng: tam giác
ABM là tam giác đều. Bài 8: Cho tam giác ABC, điểm D thuộc cạnh BC (D không trùng với B; C). Lấy M là
trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME = MB. Trên tia đối
của tia MC lấy điểm F sao cho MF = MC. Chứng minh rằng:
a) AE // BC;
b) Điểm A nằm giữa hai điểm D và E. Bài 9: Cho Ot là tia phân giác của góc xOy ( xOy là góc nhọn). Lấy điểm M Ot, vẽ
MA Ox, MB  Oy (A Ox, BOy). a) Chứng minh: MA = MB. b) Cho OA = 8 cm; OM =10 cm. Tính độ dài MA. c) Tia OM cắt AB tại I. Chứng minh: OM là đường trung trực của đoạn thẳng AB.

Hình vuông là mũ nha

0
Câu 1. Trong một tam giác vuông, kết luận nào sau đây là đúng ?A. Tổng hai góc nhọn bằng 180 0 B. Hai góc nhọn bằng nhauC. Hai góc nhọn phô nhau D. Hai góc nhọn kề nhau .Câu 2: Chọn câu trả lời đúng. Cho tam giác ABC có 00A50;B60 thì C?A. 70 0 B. 110 0 C. 90 0 D. 50 0Câu 3. Tam giác nào là tam giác vuông trong các tam giác có độ dài ba cạnh như sau:A. 1cm ; 2cm ; 3cm B. 2cm ; 3cm ; 4cmC. 3cm ; 4cm ; 5cm D. 4cm ; 5cm ;...
Đọc tiếp

Câu 1. Trong một tam giác vuông, kết luận nào sau đây là đúng ?
A. Tổng hai góc nhọn bằng 180 0 B. Hai góc nhọn bằng nhau
C. Hai góc nhọn phô nhau D. Hai góc nhọn kề nhau .
Câu 2: Chọn câu trả lời đúng. Cho tam giác ABC có 00

A50;B60 thì C?

A. 70 0 B. 110 0 C. 90 0 D. 50 0
Câu 3. Tam giác nào là tam giác vuông trong các tam giác có độ dài ba cạnh như sau:
A. 1cm ; 2cm ; 3cm B. 2cm ; 3cm ; 4cm
C. 3cm ; 4cm ; 5cm D. 4cm ; 5cm ; 6cm
Câu 4: Chọn câu sai.
A. Tam giác có hai cạnh bằng nhau là tam giác cân.
B. Tam giác có ba cạnh bằng nhau là tam giác đều.
C. Tam giác cân là tam giác đều.
D. Tam giác đều là tam giác cân.
Câu 5: Tam giác ABC vuông tại B suy ra:
A. AB 2 = BC 2 + AC 2 B. BC 2 = AB 2 + AC 2
C. AC 2 = AB 2 + BC 2 D. Cả a,b,c đều đúng
Câu 6: Hãy điền dấu X vào ô trống mà em đã chọn :
Câu Nội dung Đúng Sai
1 Tam giác vuông có một góc bằng 045 là tam giác vuông cân
2 Tam giác cân có một góc bằng 060 là tam giác đều
3 Nếu ABC là một tam giác đều thì ABC là tam giác cân
4 Nếu hai cạnh và một góc của tam giác này bằng hai cạnh và
một góc của tam giác kia thì hai tam giác đó bằng nhau
Câu 7: a). Cho ABC vuông tại A có AB = 8 cm; AC = 6 cm thì BC bằng :
A. 25 cm B. 14 cm C. 100 cm D. 10 cm
b). Cho ABC cân tại A, biết 050B thì A bằng :
A. 080 B. 050 C. 0100 D. Đáp án khác
Câu 8 . Tam giác ABC có:
A. 0ABC90 B. 0ABC180 C. 0ABC45 D. 0ABC0
Câu 9:  ABC =  DEF Trường hợp cạnh – góc – cạnh nếu
A. AB = DE; BF ; BC = EF B. AB = EF; BF ; BC = DF
C. AB = DE; BE ; BC = EF D. AB = DF; BE ; BC = EF
Câu 10. Góc ngoài của tam giác bằng :
A. Tổng hai góc trong không kề với nó. B. Tổng hai góc trong
C. Góc kề với nó D. Tổng ba góc trong của tam giác.

1
26 tháng 2 2020

Câu 1: C

Câu 2:A

Câu 3:C

Câu 4 C

Câu 5: B

Câu 6 1Đ, 2Đ, 3Đ, 4S

Câu 7: a, Đ

Câu 10 A.

Các câu khác k rõ đề

2 tháng 5 2020

bài này dài lắm ko ai giải đâu

12 tháng 5 2020

dai den bao gio moi xong lol

Câu 1. Cho tam giác ABC cân tại A, có góc A = 70°. Số đo góc B làA. 50° B. 60° C. 55° D. 75°Câu 2. Cho tam giác ABC cân tại A, góc B = 75°. Số đo của góc A làA. 40° C. 15° C. 105° D. 30°Câu 3. Tam giác MNP vuông tại N. Hệ thức nào sau đây là đúng:A MN^+ NP^= MP^B MP ^+NP^ =MN^C NM= NPD pN^+ MP^= MN^Câu 4. Cho tam giác ABC vuông tại A, AB = 5 cm, AC = 12 cm. Độ dài cạnh BC làA. 17 cm B. 13 cm C. 14 cm D. 14,4 cmCâu 5. Cho tam giác...
Đọc tiếp

Câu 1. Cho tam giác ABC cân tại A, có góc A = 70°. Số đo góc B là
A. 50° B. 60° C. 55° D. 75°
Câu 2. Cho tam giác ABC cân tại A, góc B = 75°. Số đo của góc A là
A. 40° C. 15° C. 105° D. 30°
Câu 3. Tam giác MNP vuông tại N. Hệ thức nào sau đây là đúng:

A MN^+ NP^= MP^
B MP ^+NP^ =MN^
C NM= NP
D pN^+ MP^= MN^

Câu 4. Cho tam giác ABC vuông tại A, AB = 5 cm, AC = 12 cm. Độ dài cạnh BC là
A. 17 cm B. 13 cm C. 14 cm D. 14,4 cm
Câu 5. Cho tam giác HIK vuông tại I, IH = 10 cm, HK = 16 cm. Độ dài cạnh IK là
A. 26 cm
B. \(\sqrt{156}cm\)
\(\sqrt{12}cm\)
 D. 156cm

Câu 6. Cho tam giác ABC cân tại A, AH vuông góc với BC tại H, AB = 10cm. BC = 12 cm.
Độ dài AH bằng
A. 6cm. B. 4 cm C. 8cm D. 64 cm
Câu 7. Cho tam giác đều ABC có độ dài cạnh là 6 cm. Kẻ AI vuông góc với BC. Độ dài cạnhAI là
A. \(3\sqrt{3}cm\)
B. 3 cm
C. \(3\sqrt{2}\)
D. 4 cm

Câu 8. Một chiếc tivi có chiều rộng là 30 inch, đường chéo là 50 inch. Chiều dài chiếc tivi đó là
A. 20 inch B. 1600 inch 3400 inch. D. 40 inch
Câu 9. Tam giác vuông là tam giác có độ dài ba cạnh là:
A. 3cm, 4cm,5cm B. 5cm, 7cm, 8cm C. 4cm, 6 cm, 8cm D. 3cm, 5cm, 7cm
Câu 10. Tam giác ABCcân tại A. Biết AH = 3cm, HC = 2 cm. Khi đó độ dài BC bằng

A. 5 cm
B. 4cm
C.\(2\sqrt{5}cm\)
\(2\sqrt{3}cm\)
Giups mik vs mik đg cần gấp

 

0
Bài 6 (các câu khác nhau thì không liên quan đến nhau)a) Cho tam giác ABC, kẻ BH  AC ( H  AC); CK  AB ( K  AB). Biết BH = CK.Chứng minh tam giác ABC cân.Tết đến tưng bừng, vui mừng làm ToánGiáo viên: Nguyễn Cao Uyển Mib) Cho Tam giác ABC, gọi M, N lần lượt là trung điểm các cạnh AB, AC. Biết CM =BN. Chứng tỏ tam giác ABC cân.c) Cho tam giác ABC cân tại A, Tia phân giác của góc B và góc C cắt AC và AB...
Đọc tiếp

Bài 6 (các câu khác nhau thì không liên quan đến nhau)
a) Cho tam giác ABC, kẻ BH  AC ( H  AC); CK  AB ( K  AB). Biết BH = CK.
Chứng minh tam giác ABC cân.
Tết đến tưng bừng, vui mừng làm Toán
Giáo viên: Nguyễn Cao Uyển Mi
b) Cho Tam giác ABC, gọi M, N lần lượt là trung điểm các cạnh AB, AC. Biết CM =
BN. Chứng tỏ tam giác ABC cân.
c) Cho tam giác ABC cân tại A, Tia phân giác của góc B và góc C cắt AC và AB lần
lượt tại D và E. Chứng minh BD = CE.
Bài 7: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia
CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD tại H, CK vuông góc với AE
tại K. Hai đường thẳng HB và KC cắt nhau tại I. Chứng minh rằng:
a) Tam giác ADE cân.
b) Tam giác BIC cân.
c) IA là tia phân giác của góc BIC.
Bài 8: Cho tam giác ABC vuông tại A, có AB = 5cm, BC = 13cm. Kẻ AH vuông góc với
BC tại H. Tính độ dài các đoạn thẳng: AC, AH, BH, CH.
Bài 9: (các câu khác nhau thì không liên quan đến nhau)
a) Cho tam giác ABC vuông tại A, đường cao AH = 2cm. Tính các cạnh của tam giác
ABC biết: BH = 1cm, HC = 3cm.
b) Cho tam giác ABC đều có AB = 5cm. Tính độ dài đường cao BH?
Bài 10: Cho tam giác ABC có góc A nhỏ hơn 900. Vẽ ra phía ngoài tam giác ABC các
tam giác vuông cân đỉnh A là MAB, NAC.
a) Chứng minh: MC = NB.
b) Chứng minh: MC NB 
c) Giả sử tam giác ABC đều cạnh 4 cm. Tính MB, NC và chứng minh MN // BC.

Giúp mình với ạ, mik đang cần gấp

1
6 tháng 2 2022

Ai giúp mik với mik đang cần gấp ạ

Bài 1:Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC).a, Chứng minh HB=HCb, Tính độ dài AH.c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng minh tam giác HDE cân.d, So sánh HD và HC.Bài 2:Cho tam giác ABC cân tại A có đường cao AH.a, Chứng minh tam giác ABH = tam giác ACH và AH là tia phân giác của góc BAC.b, Cho BH= 8cm, AB= 10cm.Tính AH.c,, Gọi E là trung điểm...
Đọc tiếp

Bài 1:
Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC).
a, Chứng minh HB=HC
b, Tính độ dài AH.
c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng minh tam giác HDE cân.
d, So sánh HD và HC.
Bài 2:
Cho tam giác ABC cân tại A có đường cao AH.
a, Chứng minh tam giác ABH = tam giác ACH và AH là tia phân giác của góc BAC.
b, Cho BH= 8cm, AB= 10cm.Tính AH.
c,, Gọi E là trung điểm của AC và G là giao điểm của BE và AH.Tính HG.
d, Vẽ Hx song song với AC, Hx cắt AB tại F. Chứng minh C, G, F thẳng hàng.
Bài 3
Cho tam giác ABC có CA= CB= 10cm, AB= 12cm.kẻ CI vuông góc với AB.Kẻ IH vuông góc với AC, IK vuông góc với BC.
a, Chứng minh IB= IC và tính độ dài CI
b, Chứng minh IH= IK.
c, HK// AC.
Bài 4:
Cho tam giác ABC cân tại A, vẽ AH vuông góc với BC tại H.Biết AB= 10cm, BH= 6cm.
a, Tính AH
b, tam giác ABH= tam giác ACH.
c, trên BA lấy D, CA lấy E sao cho BD= CE.Chứng minh tam giác HDE cân.
d, AH là trung trực của DE.
Bài 5:
Cho tam giác ABC cân tại AGọi D là trung điểm của BC.Từ D kẻ DE vuông góc với AB, DF vuông góc với AC. Chứng minh rằng:
a, tam giác ABD= tam giác ACD.
b, AD vuông góc với BC.
c, Cho AC= 10cm, BC= 12cm.Tính AD.
d, tam giác DEF cân.
Bài 6:
Cho tam giác ABC cân tại A có góc A < 900. kẻ BH vuông góc với AC ,CK vuông góc với AC.Gọi O là giao điểm của BH và CK.
a, Chứng minh tam giác ABH=Tam giác ACH.
b, Tam giác OBC cân.
c, Tam giác OBK = tam giác OCK.
d, trên nửa mặt phẳng bờ BC không chứa điểm A lấy I sao cho IB=IC.Chứng minh 3 điểm A, O, I thẳng hàng.
Bài 7
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB. BD và CE cắt nhau tại H.
a, Tam giác ABD=tam giác ACE.
b, Tam giác BHC cân.
c, ED//BC
d, AH cắt BC tại K, trên HK lấy M sao cho K là trung điểm của HM.Chứng minh tam giác ACM vuông.
Bài 8
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB. BD và CE cắt nhau tại H.
a, BD= CE.
b, Tam giác BHC cân.
c, AH là trung trực của BC
d, Trên tia BD lấy K sao cho D là trung điểm của BK.So sánh góc ECB và góc DKC.
Bài9
Cho tam giác ABC cân tại A.vẽ trung tuyến AM .từ M kẻ ME vuông góc với AB tại E.kẻ MF vuông góc với AC tại F.
a, chứng minh tam giác BEM= tam giác CFM.
b, AM là trung trực vủa EF.
c, từ B kẻ đường thẳng vuông góc với AB tại B, từ C kẻ đường thẳng vuông góc với AC tại C, hai đường này cắt nhau tại D.Chứng minh A,M,D thẳng hàng.
Bài 10
Cho tam giác ABC cân tại AGọi M là trung điểm của AC.Trên tia đối MB lấy D sao cho DM= BM.
a, Chứng minh Tam giác BMC= tam giác DMA.Suy ra AD//BC.
b, tam giác ACD cân.
c. trên tia đối CA lấy E sao cho CA= CE.Chuwngsminh DC đi qua trung điểm I của BE.
Bài 11: Cho tam giác ABC cân tại A (AB = AC ), M là trung điểm của BC. Gọi D là điểm là điểm nằm giữa A và M. Chứng minh rằng:
a) AM là tia phân giác của góc A?
b) (ABD = (ACD.
c) (BCD là tam giác cân ?
Bài 12: Cho tam giác ABC vuông tại A , đường phân giác BD. Kẻ DE vuông góc với BC (E BC). Gọi F là giao điểm của BA và ED.

Giúp mk với các bạn đẹp trai xinh gái ai làm đúng mk tik cho 

Sắp hết Tết rùi giúp mk vs

9
26 tháng 4 2020

uôi dài v**

26 tháng 4 2020

ủa r viết ngần đó thì mất bn tg thek

Bài 1:  Cho tam giác nhọn ABC. Kẻ AH  BC ( H BC ). Cho biết AB = 13cm; AH = 12cm; HC = 16cm. Tính các độ dài các cạnh AC; BC. Bài 2: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE.  a/  Chứng minh rằng tam giác ADE là tam giác cân.  b/  Kẻ BH  AD ( H  AD ), kẻ CK  AE ( K  AE). Chứng minh rằng BH = CK.  c/  Gọi O là giao điểm của BH...
Đọc tiếp

Bài 1:  
Cho tam giác nhọn ABC. Kẻ AH  BC ( H BC ). Cho biết AB = 13cm; AH = 12cm; HC = 16cm. Tính các độ dài các cạnh AC; BC. 
Bài 2: 
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. 
 a/  Chứng minh rằng tam giác ADE là tam giác cân. 
 b/  Kẻ BH  AD ( H  AD ), kẻ CK  AE ( K  AE). Chứng minh rằng BH = CK. 
 c/  Gọi O là giao điểm của BH và CK. Tam giác OBC là tam giác gì? Vì sao? 
Bài 3:  
Cho tam giác ABC vuông tại B có AB = 12cm, AC = 20cm. Tính dộ dài cạnh BC . 
Bài 4:  
Cho  ABC cân tại A . Vẽ BH  AC ( H  AC), CK  AB, ( K  AB ). 
 a/  Vẽ hình     
 b/  Chứng minh rằng AH = AK  
 c/  Gọi I là giao điểm BH và CK. Chứng minh   
 d/  Đường thẳng AI cắt BC tại H. Chứng minh AI  BC tại H. 
Bài 5:  
Cho  ABC có Â = 90o , BC = 15, AC = 12. Tính AB   
Bài 6:  
Cho  ABC  cân tại A. Kẻ AH  BC ( H  BC ) . 
 a/  Chứng minh BH = HC      
 b/  Kẻ HE  AC ( E  AC), HF  AB ( F  AB ). Hỏi  HEF là tam giác gì? Vì sao? 
Bài 7: 
Cho tam giác ABC cân có AB = AC = 5cm, BC= 8cm . Kẻ AH vuông góc với BC tại H. 
a/ Chứng minh: HB = HC và . 
b/ Tính độ dài AH. 
c/ Kẻ HD  AB ( D  AB ), Kẻ HE  AC (E  AC ). Chứng minh: HDE là tam giác cân 
Bài 8: 
Cho ABC có: AB = 4,5cm, BC = 6cm và AC = 7,5cm. Chứng tỏ ABC là tam giác vuông 
Bài 9:  
Cho ABC cân tại A. Kẻ BD vuông góc với AC và kẻ CE vuông góc với AB. BD và CE cắt nhau tại I. Chứng minh: 
a) 
b) 
c) AI là đường trung trực của BC. 
GVBM: Nguyễn Quốc Nhựt 


Tuyển tập các bài tập ôn tập theo từng chuyên đề- Toán 7 

Bài 10: 
Cho tam giác ABC cân tại A. Gọi D là trung điểm của cạnh BC. Qua A vẽ đường thẳng d // BC. Chứng minh rằng: 
a)      ABD = ACD. 
b)     AD là tia phân giác của góc BAC. 
c)      ADd. 
Bài 11: 
 Cho ABC có góc A bằng 600. Tia phân giác của góc ABC cắt tia phân giác của góc ACB ở I. 
a)      Cho biết . Tính số đo. 
b)     Tính số đo . 
Bài 12: 
 Cho ABC, D là trung điểm cạnh BC. Trên tia đối của tia DA lấy điểm E sao cho DE = DA. Chứng minh rằng: 
a)      ADB = EDC. 
b)     AB//CE. 
c)      . 
Bài 13: 
Cho ABC vuông tại A. Tia phân giác của cắt AC ở D; E là một điểm trên cạnh BC sao cho BE = BA. 
a)      Chứng minh rằng: ABD = EBD. 
b)     Chứng minh rằng: DEBC. 
c)      Gọi F là giao điểm của DE và AB. Chứng minh rằng DC = DF. 
Bài 14: 
Cho tam giác nhọn ABC (AB 0. D là trung điểm của cạnh AC. Trên tia AB lấy điểm E sao cho AE = AD. Chứng minh rằng: 
a)      ADE là tam giác đều. 
b)     DEC là tam giác cân. 
c)      CEAB. 
Bài 15: 
Cho ABC vuông cân tại A. M là trung điểm cạnh BC. Điểm E nằm giữa M và C. Vẽ BHAE tại H, CKAE tại K. Chứng minh rằng: 
a)      BH = AK. 
b)     HBM = KAM. 
c)      MHK vuông cân. 

_ Giải giúp mk ak, đúng mk sẽ tick, thank_

 

3
12 tháng 2 2020

15 câu hỏi hết thì sao tiến bộ được , tự làm đi nhé ,ko ai rảnh để làm cho b đâu

22 tháng 2 2020

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

(^-^'')CẦN GIẢI GẤP ĐỐNG BÀI NÀY(Có cả hình ở mỗi bài nha!)Câu 1: Cho tam giác ABC có AB = AC. Kẻ BD vuông góc với AC (D∈AC),CE vuông góc với AB ( E ∈ AB ). Gọi O là giao điểm của BD và CE. Chứng minh : a) BD = CEb) Tam giác OEB bằng tam giác ODCc) AO là tia phân giác của góc BACd) Gọi M là trung điểm của BC. Chứng minh :  A,O,M thẳng hàng.Câu 2 :Câu 3 :Cho tam giác ABC có AC>AB. Nối A với trung điểm M của...
Đọc tiếp

(^-^'')
CẦN GIẢI GẤP ĐỐNG BÀI NÀY
(Có cả hình ở mỗi bài nha!)

Câu 1: Cho tam giác ABC có AB = AC. Kẻ BD vuông góc với AC (D∈AC),CE vuông góc với AB ( E ∈ AB ). Gọi O là giao điểm của BD và CE. Chứng minh : 
a) BD = CE
b) Tam giác OEB bằng tam giác ODC
c) AO là tia phân giác của góc BAC
d) Gọi M là trung điểm của BC. Chứng minh :  A,O,M thẳng hàng.

Câu 2 :

Câu 3 :Cho tam giác ABC có AC>AB. Nối A với trung điểm M của BC. Trên tia AM lấy điểm E sao cho M là trung điểm của AE, Nối C với E. 
a) So sánh AB và CE
b) Chứng minh : \(\frac{AC-AB}{2}< AM< \frac{AC+AB}{2}.\)

Câu 4: Cho ∆ABC vuông tại C có góc A = 60o. Tia phân giác của góc BAC cắt BC ở E. Kẻ EK ⊥ AB( K ∈ AB ).Kẻ BD ⊥ AE( D ∈ AE ). Chứng minh: 

a) AC=AK và AE ⊥ CK
b) KA=KB
c) EB>AC
d) Ba đường thẳng AC,BD,KE đồng quy.

Câu 5: Cho ∆ABC có AB<AC. Trên cạnh AC lấy điểm D sao cho CD=AB. Hai đường trung trực của BD và AC cắt nhau tại E. Chứng minh rằng:
a)∆AEB = ∆CED
b) AE là tia phân giác trong tại đỉnh A của ∆ABC

4
8 tháng 4 2019

Càng nhanh càng tốt nha :D

11 tháng 6 2021

B nha bạn

11 tháng 6 2021

mình xin lỗi,mình ghi nhầm