== Bùi Thị Vân ==
bài 1 [...
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2017

Câu 2/

\(\sqrt[3]{x}+\sqrt[3]{y}=\sqrt[3]{1984}=4\sqrt[3]{31}\)

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{x}=a\sqrt[3]{31}\\\sqrt[3]{y}=b\sqrt[3]{31}\end{matrix}\right.\left(a,b\in Z\right)\)

\(\Rightarrow a+b=4\)

Các bộ số nguyên a,b thỏa mãn cái này đều là nghiệm.

16 tháng 8 2017

sao mình ko thấy hại não nhỉ chắc não mịn quá rồi :v

Bài 1:

\(x^3-x^2-x+1=\sqrt{4x+3}+\sqrt{3x^2+10x+6}\)

\(pt\Leftrightarrow x^3-x^2-4x-2=\sqrt{4x+3}-\left(x+1\right)+\sqrt{3x^2+10x+6}-\left(2x+2\right)\)

\(\Leftrightarrow x^3-x^2-4x-2=\dfrac{4x+3-\left(x+1\right)^2}{\sqrt{4x+3}+x+1}+\dfrac{3x^2+10x+6-\left(2x+2\right)^2}{\sqrt{3x^2+10x+6}+2x+2}\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-2x-2\right)=\dfrac{-\left(x^2-2x-2\right)}{\sqrt{4x+3}+x+1}+\dfrac{-\left(x^2-2x-2\right)}{\sqrt{3x^2+10x+6}+2x+2}\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-2x-2\right)+\dfrac{x^2-2x-2}{\sqrt{4x+3}+x+1}+\dfrac{x^2-2x-2}{\sqrt{3x^2+10x+6}+2x+2}=0\)

\(\Leftrightarrow\left(x^2-2x-2\right)\left(\left(x+1\right)+\dfrac{1}{\sqrt{4x+3}+x+1}+\dfrac{1}{\sqrt{3x^2+10x+6}+2x+2}\right)=0\)

Dễ thấy: \(\left(x+1\right)+\dfrac{1}{\sqrt{4x+3}+x+1}+\dfrac{1}{\sqrt{3x^2+10x+6}+2x+2}>0\) (ơn trời dễ thấy thật :v)

\(\Rightarrow x^2-2x-2=0\Rightarrow x=\dfrac{2\pm\sqrt{12}}{2}\)

28 tháng 2 2016

Bài 3 nhé bạn đặt cái căn đầu là a ,căn sau là b 

a+b=x

ab=1

Rồi tính lần lượt a+bbằng ẩn x hết 

và mũ 4 cũng vậy rồi lấy 2 số nhân nhau .Bđ là ra 

*Dạng 2: Các bài toán liên quan đến hệ pt, phương trình bậc hai một ẩn và áp dụng hệ thức Vi-et Bài 1 : Cho phương trình :x2 – mx + 2(m – 2 ) = 0 a/ Giải phương trình khi m = 1 b/ Chứng minh rằng phương trình luôn có nghiệm với mọi m c/ Tìm m để phương trình có hai nghiệm 2x1 + 3x 2  = 5  Bài 2: Cho phương trình   .  Giải phương trình khi m =2 Tìm các giá trị của m để phương trình có nghiệm. Gọi...
Đọc tiếp

*Dạng 2: Các bài toán liên quan đến hệ pt, phương trình bậc hai một ẩn và áp dụng hệ thức Vi-et

 

Bài 1 : Cho phương trình :x2 – mx + 2(m – 2 ) = 0

a/ Giải phương trình khi m = 1

b/ Chứng minh rằng phương trình luôn có nghiệm với mọi m

c/ Tìm m để phương trình có hai nghiệm 2x1 + 3x 2  = 5

 

Bài 2: Cho phương trình   .

  Giải phương trình khi m =2

  1. Tìm các giá trị của m để phương trình có nghiệm.

  2. Gọi là hai nghiệm của phương trình. Tìm giá trị của m để:

Bài 3: Cho phương trình:  

a) Chứng tỏ rằng phương trình có nghiệm   với mọi m.

b) Đặt A=.

b1) Chứng minh rằng:  A=    

b2) Tìm m sao cho A= 27.

  c) Tìm m sao cho phương trình có nghiệm này bằng ba  lần nghiệm kia

 

Bài 4:   Cho phương trình bậc hai  x2 – 2(m + 1) x + m – 4 = 0 (1)

a/ Giải phương trình (1) khi m = 1

b/ Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt với mọi m

c/ Chứng minh rằng : Biểu thức A = x1 (1 – x2) + x2( 1 – x1 ) không phụ thuộc vào giá trị của m

 

1
29 tháng 4 2018

bài 1 a: 

x2-mx+2(m-2)=0(*)

thay m=1 vào phương trình trên ta được:

2x-1x+2(1-2)=0

<=>2x-1x=-2(1-2)

<=>x=-2+4

<=>x=2

vậy m=1 thì x=2

1 tháng 8 2017

4. \(\sqrt{x}+\sqrt{y}=6\sqrt{55}\)

\(6\sqrt{55}\)  là số vô tỉ, suy ra vế trái phải là các căn thức đồng dạng chứa  \(\sqrt{55}\)

Đặt  \(\sqrt{x}=a\sqrt{55};\sqrt{y}=b\sqrt{55}\)  với  \(a,b\in N\)

\(\Rightarrow a+b=6\)

Xét các TH:

a = 0 => b = 6

a = 1 => b = 5

a = 2 => b = 4

a = 3 => b = 3

a = 4 => b = 2

a = 5 => b = 1

a = 6 => b = 0

Từ đó dễ dàng tìm đc x, y

3 tháng 8 2017

Biên cưng. Minh Quân đây. 

16 tháng 6 2020

Ai giúp em với ạ

16 tháng 6 2020

1. Ta có: \(x^2-2xy-x+y+3=0\)

<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)

<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)

<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)

<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)

Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)

Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)

Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)

Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)

Kết luận:...

28 tháng 9 2016

Áp dụng bđt \(\frac{x^2}{m}+\frac{y^2}{n}+\frac{z^2}{p}\ge\frac{\left(x+y+z\right)^2}{m+n+p}\) ta có 

\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2}=a^2+b^2+c^2\)

28 tháng 9 2016

Bài 1. Đặt \(a=\sqrt{x+3},b=\sqrt{x+7}\)

\(\Rightarrow a.b+6=3a+2b\) và \(b^2-a^2=4\)

Từ đó tính được a và b

Bài 2. \(\frac{2x-1}{x^2}+\frac{y-1}{y^2}+\frac{6z-9}{z^2}=\frac{9}{4}\)

\(\Leftrightarrow\frac{2}{x}-\frac{1}{x^2}+\frac{1}{y}-\frac{1}{y^2}+\frac{6}{z}-\frac{9}{z^2}-\frac{9}{4}=0\)

Đặt \(a=\frac{1}{x},b=\frac{1}{y},c=\frac{1}{z}\)

Ta có \(2a-a^2+b-b^2+6c-9c^2-\frac{9}{4}=0\)

\(\Leftrightarrow-\left(a^2-2a+1\right)-\left(b^2-b+\frac{1}{4}\right)-\left(9c^2-6c+1\right)=0\)

\(\Leftrightarrow-\left(a-1\right)^2-\left(b-\frac{1}{2}\right)^2-\left(3c-1\right)^2=0\)

Áp dụng tính chất bất đẳng thức suy ra a = 1 , b = 1/2 , c = 1/3

Rồi từ đó tìm được x,y,z

1 tháng 11 2016

a=-4x^2+25 với x>=-25/4

9 tháng 11 2016

sai oy ban à

27 tháng 8 2017

Gọi 1/4 số a là 0,25 . Ta có :

                   a . 3 - a . 0,25 = 147,07

                   a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )

                      a . 2,75 = 147,07

                         a = 147,07 : 2,75

                          a = 53,48

27 tháng 8 2017

Gọi 1/4 số a là 0,25 . Ta có :

                   a . 3 - a . 0,25 = 147,07

                   a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )

                      a . 2,75 = 147,07

                         a = 147,07 : 2,75

                          a = 53,48

mình nha