K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2018

A B C D M H K N O

Gọi N là trung điểm của CD.

Xét \(\Delta\)ABD: M là trung điểm AB; MH // AD; H thuộc BD => H là trung điểm BD

Ta có: OH vuông góc với MH tại H. Mà MH  // AD nên OH vuông góc AD

Xét \(\Delta\)ABC: M là trung điểm AB; MK // BC; K thuộc AC => K là trung điểm AC

Lại có: OK vuông góc MK tại K; MK // BC => OK vuông góc BC

Xét \(\Delta\)BDC: H là trung điểm BD; N là trung điểm CD => HN là đường trung bình \(\Delta\)BDC

=> HN // BC. Mà OK vuông góc BC (cmt) => OK vuông góc HN.

Xét \(\Delta\)ADC: K là trung điểm AC; N là trung điểm CD => KN là đường trung bình \(\Delta\)ADC

=> KN // AD. Mà OH vuông góc AD (cmt) => OH vuôn góc KN

Xét \(\Delta\)HNK: OK vuông góc HN; OH vuông góc KN (cmt) => O là trực tâm của \(\Delta\)HNK

=> NO vuông góc KH. Mà HK // DC (Dễ chứng minh) => NO vuông góc DC

Xét \(\Delta\)DOC: ON vuông góc DC (cmt); N là trung điểm DC => \(\Delta\)DOC cân tại O

=> OD = OC => O cách đều 2 điểm C và D (đpcm). 

16 tháng 8 2021

Cảm ơn bạn nhiều 

11 tháng 10 2020

b) Ta có: MA=MB, MH//AD nên HB=HD

Tương tự ta có: KA=KC

Gọi N là trung điểm của CD thì NK//AD

NH//BC(tính chất đường trung bình của tam giác) => NK//MH, NH//MK do đó: HO vuông góc với NK, KO vuông góc với NH.

tam giác NHK có O là trực tâm nên NO vuông góc với HK.

HK là đoạn thẳng nối hai đường chéo của hình thang nên HK//CD => NO vuông góc với CD do đó NO là đường trung trực của CD. Vậy OC=OD

4 tháng 10 2016

Mình cũng chưa làm được bài 3. Cậu làm được, chỉ mình với nhé!

25 tháng 4 2018

a) ABCD là hình thang nên AB//CD

CD=2AB ==>AB/CD=1/2

AB//CD, áp dụng định lý Ta-let, ta có

OA/OC=OB/OD=AB/CD=1/2

=>OA/OC=1/2 => OC=2OA

B) Ta có : OA/OC=OB/OD=AB/CD=1/2

==> OD/OB = 2 ==>OD = 2OB

*xét: OC/AC = 2OA/(OA + OC) = 2OA/(OA + 2OA) = 2OA/3OA = 2/3(1);

OD/BD = 2OB/(OD + OB) = 2OB/(2OB + OB) = 2/3(2)
*từ (1),(2) =>OC/AC = OD/BD = 2/3
=>O là trọng tâm tam giác FCD

c)

Vì một đường thẳng song song với AB và CD lần lượt cắt các đoạn thẳng AD, BD,AC và BC tại M, I,K và N nên KN//AB ,IM//AB và IN//AB

MI//AB, áp dụng hệ quả của định lý Ta-let, ta có

MI/AB = DM/AD = DI/IB (1)

IN//AB, áp dụng định lý Ta-let, ta có

CN/BC=DI/IB (2)

Từ (1) và (2), ta có

DM/AD=CN/BC

d)

KN//AB, áp dụng hệ quả của định lý Ta-let, ta có

KN/AB=CN/BC

Ta có :KN/AB=CN/BC và MI/AB=DM/AD

mà DM/AD=CN/BC nên KN/AB=MI/AB => KN=MI

Bài 2:

a: Xét tứ giác AMCK có

I là trung điểm của AC

I là trug điểm của MK

Do đó: AMCK là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCK là hình chữ nhật

b: Để AMCK là hình vuông thì AM=CM

=>AM=BC/2

=>ΔABC vuông tại A

13 tháng 10 2017

viet bai van bieu cam ve cay mai

13 tháng 10 2017

nhanh nha 30 phut nua