K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có AH/AB=AK/AC
nên HK//BC

b: Xet ΔABC có HK//BC

nên AH/AB=HK/BC

=>HK/18=6/9=2/3

=>HK=12(cm)

c: Xét ΔABM có HI//BM

nên HI/BM=AI/AM

Xét ΔAMC có IK//MC

nên IK/MC=AI/AM

=>HI/BM=IK/MC

mà BM=CM

nên HI=IK

=>I là trung điểm của HK

26 tháng 2 2023

vẽ hình nữa

 

a: Xét ΔABC có

\(\dfrac{AH}{AB}=\dfrac{AK}{AC}\left(=\dfrac{2}{3}\right)\)

Do đó: HK//BC

b: Xét ΔBAC có HK//BC

nên \(\dfrac{HK}{BC}=\dfrac{AH}{AB}\)

\(\Leftrightarrow HK=\dfrac{2}{3}\cdot18=12\left(cm\right)\)

c: Xét ΔAMB có HI//BM

nên \(\dfrac{HI}{BM}=\dfrac{AH}{AB}\)

hay \(\dfrac{HI}{BM}=\dfrac{2}{3}\left(1\right)\)

Xét ΔAMC có IK//MC

nên \(\dfrac{IK}{MC}=\dfrac{AK}{AC}\)

hay \(\dfrac{IK}{MC}=\dfrac{2}{3}\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra \(\dfrac{IH}{MB}=\dfrac{IK}{MC}\)

mà MB=MC

nên IH=IK

hay I là trung điểm của HK

3 tháng 8 2016

Bài 2

gọi E là trung điểm của KB

Vì tam giác CKB có BM=MC ; BE=EK

=>EM//KC

Vì tam giác ENM có AN=AM ; KA//EM

=>EK=KN

Vì KN=KE=EB=>NK=1/2KB

27 tháng 7 2018

mình cũng có câu 3 giông thế

29 tháng 3 2020

Đáp án:

Giải thích các bước giải:

a) Ta có trong tam giác abc: 

  AP/AB=11/16,5=2/3

AQ/AC=14/21=2/3

=> AP/AB=AQ/AC

=> PQ//BC ( Định lý Ta Lét đảo ) (đpcm )

b) Đang suy nghĩ, khi nào nghĩ ra mik sẽ giải tiếp

29 tháng 3 2020

b Gọi G là trọng tâm của ABC Chứng minh  P Q G thẳng hàng

Mik chép sai nha

Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

0
22 tháng 4 2020

image

Định lý đảo và hệ quả của định lý Talet

Chúc bạn học tốt !