K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2021

Đề: Cho ∆ABC nhọn, 3 đường cao AM, BN, CP đồng quy tại H. a) Chứng minh: ∆ABM ∽ ∆AHP và ∆ABH ∽ ∆AMP; b) Chứng minh: MH.MA = MB.MC; c) Chứng minh: ∆AHB ∽ ∆NHM; d) Chứng minh: ∆MAP ∽ ∆MNH

Giải

28 tháng 3 2021

a)

Phần b) và c)

24 tháng 4 2020

a, xét tam giác AEB và tam giác AIC có : ^A chung

^AIC = ^AEB = 90

=> tam giác AEB đồng dạng tam giác AIC (g-g)

b, tam giác AEB đồng dạng với tam giác AIC (câu a)

=> AE/AB = AI/AC (Đn)

xét tam giác AIE và tam giác ACB có : ^A chung

=> tam giác AIE đồng dạng với tam giác ACB (c-g-c)

24 tháng 4 2020
https://i.imgur.com/1JQm2Gr.jpg
5 tháng 8 2018

bạn gửi cho mk lời giải của 3 câu kia đi mk sẽ giải tiếp

6 tháng 8 2018

mk xin lỗi mk bó tay

mk ko giúp đc bạn rồi :(((

4:

a: Xét ΔACH vuông tại H và ΔBCA vuông tại A có

góc ACH chung

=>ΔACH đồng dạng với ΔBCA

b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

góc HAB=góc HCA

=>ΔHAB đồng dạng với ΔHCA

=>HA/HC=HB/HA

=>HA^2=HB*HC

c: góc EHD=góc EHA+góc DHA

=1/2*góc AHB+1/2*góc AHC=90 độ

góc EAD+góc EHD=180 độ

=>EADH nội tiếp

=>góc AED=góc AHD và góc ADE=góc AHE

mà góc AHD=góc AHE=45 độ

nên góc AED=góc ADE

=>AD=AE

20 tháng 11 2016

các đường thẳng qua F song song với BN và qua B song song với CP cắt nhau tại D 
a) CM : Tứ giác BDCP là hình bình hành 
b) CM : Tứ giác PNCD là hình thang 
c) CM : AM // ND và AM = ND

Bài 1 Cho tam giác ABC vuông tại A có đường cao AH. Vẽ HE vuông góc với AB tại E, vẽ HF vuông góc với AC tại F. a) Chứng minh rằng tam giác AEH và tam giác AHB đồng dạng. Suy ra AH 2 = AE.AB. b) Chứng minh rằng AE.AB = AF.AC. c) Chứng minh rằng tam giác AFE đồng dạng với tam giác ABC. d) Gọi AM là trung tuyến của tam giác ABC. Chứng minh AM⊥EF Bài 2/ Cho tam giác ABC có ba góc nhọn, đường cao BE, CF cắt nhau ở...
Đọc tiếp

Bài 1

Cho tam giác ABC vuông tại A có đường cao AH. Vẽ HE vuông góc với AB tại
E, vẽ HF vuông góc với AC tại F.
a) Chứng minh rằng tam giác AEH và tam giác AHB đồng dạng. Suy ra AH 2 =
AE.AB.
b) Chứng minh rằng AE.AB = AF.AC.
c) Chứng minh rằng tam giác AFE đồng dạng với tam giác ABC.
d) Gọi AM là trung tuyến của tam giác ABC. Chứng minh AM⊥EF
Bài 2/

Cho tam giác ABC có ba góc nhọn, đường cao BE, CF cắt nhau ở H.
a) Chứng minh AE.AC = AF.AB
b) Chứng minh ΔAEF∼ΔABC.
c) Chứng minh ΔHEF∼ΔHCB.
d) Phân giác của góc BAC lần lượt cắt EF tại I, cắt BC tại K.

1/ Cho tam giác ABC vuông tại A có đường cao AH. Vẽ HE vuông góc với AB tại
E, vẽ HF vuông góc với AC tại F.
a) Chứng minh rằng tam giác AEH và tam giác AHB đồng dạng. Suy ra AH 2 =
AE.AB.
b) Chứng minh rằng AE.AB = AF.AC.
c) Chứng minh rằng tam giác AFE đồng dạng với tam giác ABC.
d) Gọi AM là trung tuyến của tam giác ABC. Chứng minh AM⊥EF
2/ Cho tam giác ABC có ba góc nhọn, đường cao BE, CF cắt nhau ở H.
a) Chứng minh AE.AC = AF.AB
b) Chứng minh ΔAEF∼ΔABC.
c) Chứng minh ΔHEF∼ΔHCB.
d) Phân giác của góc BAC lần lượt cắt EF tại I, cắt BC tại K.

Chứng Minh: \(\frac{IE}{IF}=\frac{KB}{KC}\)

0